Skip to main content
Log in

Determinantal characterization of canonical curves and combinatorial theta identities

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We characterize genus g canonical curves by the vanishing of combinatorial products of g + 1 determinants of Brill-Noether matrices. This also implies the characterization of canonical curves in terms of (g−2)(g−3)/2 theta identities. A remarkable mechanism, based on a basis of H 0(K C ) expressed in terms of Szegö kernels, reduces such identities to a simple rank condition for matrices whose entries are logarithmic derivatives of theta functions. Such a basis, together with the Fay trisecant identity, also leads to the solution of the question of expressing the determinant of Brill-Noether matrices in terms of theta functions, without using the problematic Klein-Fay section σ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello E., Cornalba M., Griffiths P.A., Harris J.: Geometry of Algebraic Curves, vol. 1. Springer, Heidelberg (1985)

    Google Scholar 

  2. Arbarello E., De Concini C.: On a set of equations characterizing Riemann matrices. Ann. Math. 120, 119–140 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbarello E., De Concini C.: Another proof of a conjecture of S.P. Novikov on periods of abelian integrals on Riemann surfaces. Duke Math. J. 54, 163–178 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arbarello E., Harris J.: Canonical curves and quadrics of rank 4. Compos. Math. 43, 145–179 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Arbarello E., Krichever I.M., Marini G.: Characterizing Jacobians via flexes of the Kummer variety. Math. Res. Lett. 13, 109–123 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Arbarello E., Sernesi E.: Petri’s approach to the study of the ideal associated to a special divisor. Invent. Math. 49, 99–119 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Birkenhake C., Lange H.: Complex Abelian Varieties, 2nd edn. Grundlehren der Mathematischen Wissenschaften, 302. Springer, Berlin (2004)

    Google Scholar 

  8. Casalaina-Martin S.: Singularities of the Prym theta divisor. Ann. Math. 170, 162–204 (2009)

    Article  MathSciNet  Google Scholar 

  9. D’Hoker E., Phong D.H.: Two-loop superstrings. IV: the cosmological constant and modular forms. Nucl. Phys. B 639, 129–181 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donagi R.: Non-Jacobians in the Schottky loci. Ann. Math. 126, 193–217 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donagi R.: Big Schottky. Invent. Math. 89, 569–599 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donagi, R.: The Schottky problem. Theory of moduli (Montecatini Terme, 1985). Springer Lecture Notes in Math., vol. 1337, pp. 84–137 (1988)

  13. Dubrovin B.: Theta functions and non-linear equations. Russ. Math. Surv. 36, 11–92 (1981)

    Article  MathSciNet  Google Scholar 

  14. Farkas, H.: Vanishing theta nulls and Jacobians. In: The Geometry of Riemann Surfaces and Abelian Varieties. Contemp. Math., vol. 397, pp. 37–53 (2006)

  15. Fay, J.: Theta Functions on Riemann surfaces. Springer Lecture Notes in Math., vol. 352 (1973)

  16. Fay, J.: Kernel functions, analytic torsion and moduli spaces. Mem. Am. Math. Soc. 96 (1992)

  17. Gunning R.C.: Some curves in abelian varieties. Invent. Math. 66, 377–389 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gunning R.C.: Some identities for abelian integrals. Am. J. Math. 108, 39–74 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grushevsky, S.: The Schottky problem. Proceedings of “Classical Algebraic Geometry Today” Workshop, MSRI 2009

  20. Grushevsky S., Salvati Manni R.: Jacobians with a vanishing theta-null in genus 4. Isr. J. Math. 164, 303–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krichever I.M.: Integration of non-linear equations by methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)

    Article  MATH  Google Scholar 

  22. Krichever, I.M.: Integrable linear equations and the Riemann-Schottky problem. In: Algebraic Geometry and Number Theory. Progress in Mathematics, vol. 253, pp. 497–514. Birkhäuser, Boston (2006)

  23. Krichever I.M.: Characterizing Jacobians via trisecants of the Kummer variety. Ann. Math. 172, 485–516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marini G.: A geometrical proof of Shiota’s Theorem on a conjecture of S.P. Novikov. Compos. Math. 111, 305–322 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mulase M.: Cohomological structure in soliton equations and Jacobian varieties. J. Differ. Geom. 19, 403–430 (1984)

    MathSciNet  MATH  Google Scholar 

  26. Mumford, D.: The Red Book of Varieties and Schemes. Springer Lecture Notes in Math., vol. 1358 (1999)

  27. Petri, K.: Über die invariante darstellung algebraischer funktionen einer veränderlichen. Math. Ann. 88, 242–289 (1922)

    Article  MathSciNet  Google Scholar 

  28. Polishchuk A.: Abelian Varieties, Theta Functions and the Fourier Transform. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  29. Saint-Donat B.: On Petri’s analysis of the linear system of quadrics through a canonical curve. Math. Ann. 206, 157–175 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schreyer F.O.: A standard basis approach to syzygies of canonical curves. J. Reine Angew. Math. 421, 83–123 (1991)

    MathSciNet  MATH  Google Scholar 

  31. Shiota T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83, 333–382 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. van Geemen B.: Siegel modular forms vanishing on the moduli space of curves. Invent. Math. 78, 329–349 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  33. van Geemen B., van der Geer G.: Kummer varieties and the moduli spaces of abelian varieties. Am. J. Math. 108, 615–641 (1986)

    Article  MATH  Google Scholar 

  34. Welters G.E.: A characterization of non-hyperelliptic Jacobi varieties. Invent. Math. 74, 437–440 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Welters G.E.: A criterion for Jacobi varieties. Ann. Math. 120, 497–504 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Matone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matone, M., Volpato, R. Determinantal characterization of canonical curves and combinatorial theta identities. Math. Ann. 355, 327–362 (2013). https://doi.org/10.1007/s00208-012-0787-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0787-z

Keywords

Navigation