Skip to main content
Log in

A Chevalley theorem for difference equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

By a theorem of Chevalley the image of a morphism of varieties is a constructible set. The algebraic version of this fact is usually stated as a result on “extension of specializations” or “lifting of prime ideals”. We present a difference analog of this theorem. The approach is based on the philosophy that occasionally one needs to pass to higher powers of σ, where σ is the endomorphism defining the difference structure. In other words, we consider difference pseudo fields (which are finite direct products of fields) rather than difference fields. We also prove a result on compatibility of pseudo fields and present some applications of the main theorem, e.g. constrained extension and uniqueness of differential Picard–Vessiot rings with a difference parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amano K., Masuoka A.: Picard-Vessiot extensions of Artinian simple module algebras. J. Algebra 285(2), 743–767 (2005). doi:10.1016/j.jalgebra.2004.12.006

    Article  MathSciNet  MATH  Google Scholar 

  2. Antieau, B., Ovchinnikov, A., Trushin, D.: Galois theory of difference equations with periodic parameters (2010). ArXiv:1009.1159v1

  3. Atiyah M.F., Macdonald I.G.: Introduction to commutative algebra. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  4. Bourbaki, N.: Algebra II. Chapters 4–7. Elements of Mathematics (Berlin). Springer, Berlin (1990) (Translated from the French by P.M. Cohn and J. Howie)

  5. Cassidy, P.J., Singer, M.F.: Galois theory of parameterized differential equations and linear differential algebraic groups. In: Differential Equations and Quantum Groups. IRMA Lect. Math. Theor. Phys., vol. 9, pp. 113–155. Eur. Math. Soc., Zürich (2007)

  6. Chatzidakis Z., Hrushovski E.: Model theory of difference fields. Trans. Am. Math. Soc. 351(8), 2997–3071 (1999). doi:10.1090/S0002-9947-99-02498-8

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatzidakis, Z., Hrushovski, E., Peterzil, Y.: Model theory of difference fields. II. Periodic ideals and the trichotomy in all characteristics. Proc. Lond. Math. Soc. (3) 85(2), 257–311 (2002). doi:10.1112/S0024611502013576

  8. Cohn R.M.: Difference Algebra. Interscience Publishers/Wiley, New York (1965)

    MATH  Google Scholar 

  9. Giral J.M.: Krull dimension, transcendence degree and subalgebras of finitely generated algebras. Arch. Math. (Basel) 36(4), 305–312 (1981). doi:10.1007/BF01223706

    Article  MathSciNet  MATH  Google Scholar 

  10. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. I. Inst. Hautes Études Sci. Publ. Math. 20, 259 (1964)

  11. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III. Inst. Hautes Études Sci. Publ. Math. 28, 255 (1966)

  12. Hardouin C., Singer M.F.: Differential Galois theory of linear difference equations. Math. Ann. 342(2), 333–377 (2008). doi:10.1007/s00208-008-0238-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Hardouin, C., di Vizio, L., Michael, W.: Difference Galois theory for linear differential equations. In preparation

  14. Hrushovski, E.: The elementary theory of the Frobenius automorphisms. ArXiv:math/0406514v1. Updated version from http://www.ma.huji.ac.il/~ehud/ (2004)

  15. Kac V.G.: A differential analog of a theorem of Chevalley. Int. Math. Res. Notices 13, 703–710 (2001). doi:10.1155/S1073792801000368

    Article  Google Scholar 

  16. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973). Pure and Applied Mathematics, vol. 54

  17. Kolchin E.R.: Constrained extensions of differential fields. Adv. Math. 12, 141–170 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kovacic J.J.: The differential Galois theory of strongly normal extensions. Trans. Am. Math. Soc. 355(11), 4475–4522 (2003). doi:10.1090/S0002-9947-03-03306-3

    Article  MathSciNet  MATH  Google Scholar 

  19. Landesman P.: Generalized differential Galois theory. Trans. Am. Math. Soc. 360(8), 4441–4495 (2008). doi:10.1090/S0002-9947-08-04586-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Levin, A.: Difference algebra. In: Algebra and Applications, vol. 8. Springer, New York (2008)

  21. Marker, D., Messmer, M., Pillay, A.: Model theory of fields. In: Lecture Notes in Logic, vol. 5, 2nd edn. Association for Symbolic Logic, La Jolla (2006)

  22. Matzat, B.H.: Differential Galois theory in positive characteristic. IWR-Preprint (2001)

  23. Okugawa, K.: Differential algebra of nonzero characteristic. In: Lectures in Mathematics, vol. 16. Kinokuniya Company Ltd., Tokyo (1987)

  24. van der Put, M., Singer, M.F.: Galois theory of difference equations. In: Lecture Notes in Mathematics, vol. 1666. Springer, Berlin (1997)

  25. Rosen, E.: A differential Chevalley theorem. ArXiv:0810.5486

  26. Trushin, D.: Difference Nullstellensatz. ArXiv:0908.3865v1 (2009)

  27. Trushin, D.: Difference Nullstellensatz in the case of finite group. ArXiv:0908.3863v1 (2009)

  28. Wibmer, M.: Geometric difference Galois theory. Ph.D. thesis, Heidelberg (2010). http://www.ub.uni-heidelberg.de/archiv/10685

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wibmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wibmer, M. A Chevalley theorem for difference equations. Math. Ann. 354, 1369–1396 (2012). https://doi.org/10.1007/s00208-011-0770-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0770-0

Mathematics Subject Classification (2000)

Navigation