Skip to main content
Log in

The Calabi metric for the space of Kähler metrics

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Given any closed Kähler manifold we define, following an idea by Calabi (Bull. Am. Math. Soc. 60:167–168, 1954), a Riemannian metric on the space of Kähler metrics regarded as an infinite dimensional manifold. We prove several geometrical features of the resulting space, some of which we think were already known to Calabi. In particular, the space is a portion of an infinite dimensional sphere and explicit unique smooth solutions for the Cauchy and the Dirichlet problems for the geodesic equation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Rferences

  • Arezzo C., Tian G.: Infinite geodesic rays in the space of Kähler potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2(4), 617–630 (2003)

    MathSciNet  MATH  Google Scholar 

  • Besse A.: Einstein Manifolds, Classics in Mathematics. Springer, Berlin (1987)

    Google Scholar 

  • Bourguignon J.P.: Ricci curvature and measures. Jpn. J. Math. 4, 27–45 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Calabi E.: The variation of Kähler metrics I The structure of the space; II A minimum problem. Bull. Am. Math. Soc. 60, 167–168 (1954)

    Google Scholar 

  • Calabi, E.: The space of Kähler metrics. In: Proceedings of the International Congress of Mathematicians, pp. 206–207 (1954)

  • Calabi, E.: The space of Kähler metrics. In: Proc. Internat. Congr. Math. (Amsterdam, 1954), vol. 2, pp. 206–207. Noordhoff, Groningen, and North-Holland, Amsterdam (1956)

  • Calabi, E.: Extremal Kähler metrics. In: Seminar on Differential Geometry, Ann. Math. Stud. vol. 102, pp. 259–290 (1982)

  • Calabi, E.: Extremal Kähler metrics II. In: Differential Geometry and Complex analysis. Lecture notes in Mathematics. Springer, Berlin, pp. 96–114 (1985)

  • Calabi E., Chen X.X.: The space of Kähler metrics II. J. Differ. Geom. 56, 189–234 (2000)

    Google Scholar 

  • Calabi, E., Chen, X.X.: Private communication

  • Chen X.X.: The space of Kähler metrics. J. Differ. Geom. 61, 173–193 (2002)

    MATH  Google Scholar 

  • Chen X.X.: Space of Kähler metrics, III On the lower bound of the Calabi energy and geodesic distance. Invent. Math. 175(3), 453–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X.X.: Space of Kähler metrics, IV. On the lower bound of the K-energy. arXiv:0809.4081

  • Chen X.X., He W.: The space of volume forms. Int. Math. Res. Notices 2011(5), 967–1009 (2011)

    MathSciNet  MATH  Google Scholar 

  • Chen, X.X., Sun, S.: Space of Kähler metrics (V). Kähler quantization. arXiv:0902.4149

  • Chen X.X., Tian G.: Geometry of Kahler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes Etudes Sci. No. 107, 1–107 (2008)

    MathSciNet  MATH  Google Scholar 

  • Clarke, B., Rubinstein, Y.: Ricci flow and the metric completion of the space of Kähler metrics. arXiv:1102.3787

  • Clarke, B., Rubinstein, Y.: Conformal deformations of the Ebin metric and a generalized Calabi metric on the space of Riemannian metrics. arXiv:1104.4314

  • Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, Am. Math. Soc. Transl. (2), vol. 196, pp. 13–33. American Mathematical Society, Providence (1999)

  • Donaldson S.K.: Nahm’s equation and free boundary problems, The many facets of geometry, pp. 71–91. Oxford University Press, Oxford (2010)

    Google Scholar 

  • Mabuchi T.: Some symplectic geometry on compact Kähler manifolds. Osaka J. Math. 24, 227–252 (1999)

    MathSciNet  Google Scholar 

  • Mabuchi T.: K-energy maps integrating Futaki invariants. Tohoku Math. J. (2) 38(4), 575–593 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  • Rubinstein, Y., Zelditch, S.: The Cauchy problem for the homogeneous Monge–Ampère equation, I. Toeplitz quantization. arXiv:1008.3577

  • Rubinstein, Y., Zelditch, S.: The Cauchy problem for the homogeneous Monge–Ampère equation, II. Legendre transform, arXiv:1010.2442

  • Semmes S.: Complex Monge–Ampère and symplectic manifolds. Am. J. Math 114, 495–550 (1999)

    Article  MathSciNet  Google Scholar 

  • Warner F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, Berlin (1983)

    MATH  Google Scholar 

  • Yau S.T.: On the Ricci Curvature of a Compact Kähler Manifold and the Complex Monge–Ampère Equation. Commun. Pure Appl. Math 31, 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Calamai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calamai, S. The Calabi metric for the space of Kähler metrics. Math. Ann. 353, 373–402 (2012). https://doi.org/10.1007/s00208-011-0690-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-011-0690-z

Mathematics Subject Classification (1991)

Navigation