Skip to main content
Log in

Entire functions with Julia sets of positive measure

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let f be a transcendental entire function for which the set of critical and asymptotic values is bounded. The Denjoy–Carleman–Ahlfors theorem implies that if the set of all z for which |f(z)| > R has N components for some R > 0, then the order of f is at least N/2. More precisely, we have log log M(r, f) ≥ (N/2) log rO(1), where M(r, f) denotes the maximum modulus of f. We show that if f does not grow much faster than this, then the escaping set and the Julia set of f have positive Lebesgue measure. However, as soon as the order of f exceeds N/2, this need not be true. The proof requires a sharpened form of an estimate of Carleman and Tsuji related to the Denjoy–Carleman–Ahlfors theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barański K.: Hausdorff dimension of hairs and ends for entire maps of finite order. Math. Proc. Cambridge Philos. Soc. 145, 719–737 (2008)

    Article  MATH  Google Scholar 

  2. Barański K., Karpińska B., Zdunik A.: Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts. Int. Math. Res. Not. IMRN 2009, 615–624 (2009)

    MATH  Google Scholar 

  3. Bergweiler W.: Iteration of meromorphic functions. Bull. Am. Math. Soc. (N. S.) 29, 151–188 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bergweiler W., Eremenko A.: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoamericana 11, 355–373 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bergweiler W., Hinkkanen A.: On semiconjugation of entire functions. Math. Proc. Cambridge Philos. Soc. 126, 565–574 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergweiler W., Karpińska B.: On the Hausdorff dimension of the Julia set of a regularly growing entire function. Math. Proc. Cambridge Philos. Soc. 148, 531–551 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bergweiler W., Karpińska B., Stallard G.M.: The growth rate of an entire function and the Hausdorff dimension of its Julia set. J. Lond. Math. Soc. 80, 680–698 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bergweiler W., Rippon P.J., Stallard G.M.: Dynamics of meromorphic functions with direct or logarithmic singularities. Proc. Lond. Math. Soc. 97, 368–400 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bock, H.: Über das Iterationsverhalten meromorpher Funktionen auf der Juliamenge. Dissertation, Technical University Aachen (1998)

  10. Carleman T.: Sur une inégalité différentielle dans la théorie des fonctions analytiques. C. R. Acad. Sci. Paris 196, 995–997 (1933)

    Google Scholar 

  11. de Guzmán, M.: Real Variable Methods in Fourier Analysis. In: North-Holland Math. Studies 46. Amsterdam, New York (1981)

  12. Eremenko, A.E.: On the iteration of entire functions. In: Dynamical Systems and Ergodic Theory, pp. 339–345. Banach Center Publications 23, Polish Scientific Publishers, Warsaw (1989)

  13. Eremenko A.E., Lyubich M.Yu.: Dynamical properties of some classes of entire functions. Ann. Inst. Fourier 42, 989–1020 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Goldberg, A.A., Ostrovskii, I.V.: Value Distribution of Meromorphic Functions. In: Transl. Math. Monographs, vol. 236. American Math. Soc., Providence (2008)

  15. Hayman W.K.: Meromorphic Functions. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  16. Hayman W.K.: Subharmonic Functions, Vol. 2. In: London Math. Soc. Monographs 20. Academic Press, London (1989)

    Google Scholar 

  17. Hemke J.-M.: Recurrence of entire transcendental functions with simple post-singular sets. Fund. Math. 187, 255–289 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kotus J., Urbański M.: Fractal measures and ergodic theory of transcendental meromorphic functions. In: Rippon, P.J., Stallard, G.M. (eds) Transcendental Dynamics and Complex Analysis. In: London Math Soc Lect Note Ser, vol. 348, pp. 251–316. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  19. Langley J.K.: On the multiple points of certain meromorphic functions. Proc. Am. Math. Soc. 123, 355–373 (1995)

    Article  MathSciNet  Google Scholar 

  20. McMullen C.: Area and Hausdorff dimension of Julia sets of entire functions. Trans. Am. Math. Soc. 300, 329–342 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nevanlinna R.: Eindeutige analytische Funktionen. Springer, Berlin (1953)

    MATH  Google Scholar 

  22. Peter J.: Hausdorff measure of Julia sets in the exponential family. J. Lond. Math. Soc. 82, 229–255 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rempe L.: Rigidity of escaping dynamics for transcendental entire functions. Acta Math. 203, 235–267 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rippon P.J., Stallard G.M.: Dimensions of Julia sets of meromorphic functions. J. Lond. Math. Soc. 71(2), 669–683 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rippon P.J., Stallard G.M.: On questions of Fatou and Eremenko. Proc. Am. Math. Soc. 133, 1119–1126 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rippon P.J., Stallard G.M.: Escaping points of entire functions of small growth. Math. Z. 261, 557–570 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schubert, H.: Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung. Dissertation, University of Kiel (2007)

  28. Skorulski B.: Metric properties of the Julia set of some meromorphic functions with an asymptotic value eventually mapped onto a pole. Math. Proc. Cambridge Philos. Soc. 139, 117–138 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  29. Speiser A.: Probleme aus dem Gebiet der ganzen transzendenten Funktionen. Comment. Math. Helv. 1, 289–312 (1929)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stallard G.M.: Entire functions with Julia sets of zero measure. Math. Proc. Cambridge Philos. Soc. 108, 551–557 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stallard G.M.: Dimensions of Julia sets of transcendental meromorphic functions. In: Rippon, P.J., Stallard, G.M. (eds) Transcendental Dynamics and Complex Analysis. London Math Soc Lect Note Ser, vol. 348, pp. 425–446. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  32. Taniguchi M.: Size of the Julia set of structurally finite transcendental entire function. Math. Proc. Cambridge Philos. Soc. 135, 181–192 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Tsuji, M.: Potential Theory in Modern Function Theory. Maruzen, Tokyo (1959) [reprint by Chelsea, New York (1975)]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Bergweiler.

Additional information

M. Aspenberg and W. Bergweiler were supported by the Research Training Network CODY of the European Commission and the G.I.F., the German-Israeli Foundation for Scientific Research and Development, Grant G-809-234.6/2003. W. Bergweiler was also supported by the ESF Research Networking Programme HCAA and the Deutsche Forschungsgemeinschaft, Be 1508/7-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aspenberg, M., Bergweiler, W. Entire functions with Julia sets of positive measure. Math. Ann. 352, 27–54 (2012). https://doi.org/10.1007/s00208-010-0625-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-010-0625-0

Mathematics Subject Classification (2000)

Navigation