Skip to main content
Log in

A curvature theory for discrete surfaces based on mesh parallelity

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We consider a general theory of curvatures of discrete surfaces equipped with edgewise parallel Gauss images, and where mean and Gaussian curvatures of faces are derived from the faces’ areas and mixed areas. Remarkably these notions are capable of unifying notable previously defined classes of surfaces, such as discrete isothermic minimal surfaces and surfaces of constant mean curvature. We discuss various types of natural Gauss images, the existence of principal curvatures, constant curvature surfaces, Christoffel duality, Koenigs nets, contact element nets, s-isothermic nets, and interesting special cases such as discrete Delaunay surfaces derived from elliptic billiards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobenko, A.I., Schröder, P., Sullivan, J.M., Ziegler, G.M. (eds): Discrete differential geometry. Oberwolfach Seminars, vol. 38. Birkhäuser, Basel (2008)

    Google Scholar 

  2. Bobenko A.I., Hoffmann T., Springborn B.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164, 231–264 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bobenko A.I., Pinkall U.: Discrete isothermic surfaces. J. Reine Angew. Math. 475, 187–208 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Bobenko A.I., Pinkall U.: Discretization of surfaces and integrable systems. In: Bobenko, A.I., Seiler, R. (eds) Discrete integrable geometry and physics, pp. 3–58. Oxford University Press, Oxford (1999)

    Google Scholar 

  5. Bobenko A.I., Suris Y.: On organizing principles of discrete differential geometry. Geometry of spheres. Russ. Math. Surv. 62(1), 1–43 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobenko, A.I., Suris, Y.: Discrete differential geometry. Integrable Structure. Am. Math. Soc. (2008)

  7. Bobenko, A.I., Suris, Y.: Discrete Koenigs nets and discrete isothermic surfaces. International Mathematical Research Notes, pp. 1976–2012 (2009)

  8. Christoffel E.: Ueber einige allgemeine Eigenschaften der Minimumsflächen. J. Reine Angew. Math. 67, 218–228 (1867)

    MATH  Google Scholar 

  9. Fordy, A.P., Wood, J.C. (eds): Harmonic maps and integrable systems. Aspects of Mathematics, vol. E23. Vieweg, Braunschweig (1994)

    Google Scholar 

  10. Hertrich-Jeromin U., Hoffmann T., Pinkall U.: A discrete version of the Darboux transform for isothermic surfaces. In: Bobenko, A.I., Seiler, R. (eds) Discrete integrable geometry and physics, pp. 59–81. Clarendon Press, Oxford (1999)

    Google Scholar 

  11. Hoffmann T.: Discrete rotational cmc surfaces and the elliptic billiard. In: Hege, H.-C., Polthier, K. (eds) Mathematical Visualization, pp. 117–124. Springer, Berlin (1998)

    Google Scholar 

  12. Konopelchenko B.G., Schief W.K.: Trapezoidal discrete surfaces: geometry and integrability. J. Geom. Phys. 31, 75–95 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pinkall U., Polthier K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    MATH  MathSciNet  Google Scholar 

  14. Pottmann, H., Grohs, P., Blaschitz, B.: Edge offset meshes in Laguerre geometry. Adv. Comput. Math. (2009, to appear)

  15. Pottmann, H., Liu, Y., Wallner, J., Bobenko, A.I., Wang, W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graph. 26(3):#65, 11 pp. (2007)

  16. Pottmann H., Wallner J.: The focal geometry of circular and conical meshes. Adv. Comput. Math. 29, 249–268 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rogers C., Schief W.K.: Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  18. Sauer R.: Parallelogrammgitter als Modelle pseudosphärischer Flächen. Math. Z. 52, 611–622 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schief W.K.: On the unification of classical and novel integrable surfaces. II. Difference geometry. R. Soc. Lond. Proc. Ser. A 459, 373–391 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Schief W.K.: On a maximum principle for minimal surfaces and their integrable discrete counterparts. J. Geom. Phys. 56, 1484–1495 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schneider R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  22. Simon, U., Schwenck-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces. Lecture Notes. Science University of Tokyo (1992)

  23. Tabachnikov S.: Geometry and Billiards. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  24. Wunderlich W.: Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Sitz. Öst. Akad. Wiss. Math.-Nat. Kl. 160, 39–77 (1951)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wallner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobenko, A.I., Pottmann, H. & Wallner, J. A curvature theory for discrete surfaces based on mesh parallelity. Math. Ann. 348, 1–24 (2010). https://doi.org/10.1007/s00208-009-0467-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-009-0467-9

Keywords

Navigation