Skip to main content
Log in

Quotients of values of the Dedekind Eta function

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Inspired by Riemann’s work on certain quotients of the Dedekind Eta function, in this paper we investigate the value distribution of quotients of values of the Dedekind Eta function in the complex plane, using the form \({\frac{\eta(A_jz)} {\eta(A_{j-1}z)}}\) , where A j-1 and A j are matrices whose rows are the coordinates of consecutive visible lattice points in a dilation of a fixed region Ω in \({\mathbb{R}^2}\) , and z is a fixed complex number in the upper half plane. In particular, we show that the limiting distribution of these quotients depends heavily on the index of Farey fractions which was first introduced and studied by Hall and Shiu. The distribution of Farey fractions with respect to the value of the index dictates the universal limiting behavior of these quotients. Motivated by chains of these quotients, we show how to obtain a generalization, due to Zagier, of an important formula of Hall and Shiu on the sum of the index of Farey fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkan, E., Ledoan, A.H., Zaharescu, A.: Dirichlet L-functions and the index of visible points. Ill. J. Math. 51(2), 455–477 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Alkan, E., Ledoan, A.H., Vajaitu, M., Zaharescu, A.: On the index of fractions with square-free denominators in arithmetic progressions (to appear in Ramanujan J)

  3. Augustin, V., Boca, F.P., Cobeli, C., Zaharescu, A.: The h spacing distribution between Farey points. Math. Proc. Camb. Phil. Soc. 131, 23–38 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berndt, B.C.: Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Am. Math. Soc. 178, 495–508 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berndt, B.C.: Character transformation formulae similar to those for the Dedekind eta-function. In: Proceedings Symposium Pure Math., vol. 24, pp. 9–30. Am. Math. Soc., Providence (1973)

  6. Berndt, B.C.: Reciprocity theorems for Dedekind sums and generalizations. Adv. Math. 23(3), 285–316 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boca, F.P., Cobeli, C., Zaharescu, A.: A conjecture of R. R. Hall on Farey points. J. Reine Angew. Math. 535, 207–236 (2001)

    MATH  MathSciNet  Google Scholar 

  8. Boca, F.P., Cobeli, C., Zaharescu, A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213(2), 433–470 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Boca, F.P., Gologan, R.N., Zaharescu, A.: On the index of Farey sequences. Q. J. Math. 53(4), 377–391 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carlitz, L.: Some theorems on generalized Dedekind sums. Pac. J. Math. 3, 513–522 (1953)

    MATH  Google Scholar 

  11. Carlitz, L.: The reciprocity theorem for Dedekind sums. Pac. J. Math. 3, 523–527 (1953)

    Google Scholar 

  12. Carlitz, L.: A note on generalized Dedekind sums. Duke Math. J. 21, 399–404 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carlitz, L.: Generalized Dedekind sums. Math. Z. 85, 83–90 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  14. Carlitz, L.: Linear relations among generalized Dedekind sums. J. Reine Angew. Math. 280, 154–162 (1965)

    Google Scholar 

  15. Estermann, T.: On Kloosterman’s sums. Mathematika 8, 83–86 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hall, R.R., Shiu, P.: The index of a Farey sequence. Mich. Math. J. 51(2), 209–223 (2003)

    MATH  MathSciNet  Google Scholar 

  17. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. The Clarendon Press/Oxford University Press, Oxford/New York (1979)

    MATH  Google Scholar 

  18. Martin, Y.: Multiplicative η-quotients. Trans. Am. Math. Soc. 348(12), 4825–4856 (1996)

    Article  MATH  Google Scholar 

  19. Martin, Y., Ono, K.: Eta-quotients and elliptic curves. Proc. Am. Math. Soc. 125(11), 3169–3176 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rademacher, H., Grosswald, E.: Dedekind sums. The Carus Mathematical Monographs, vol. 16. The Mathematical Association of America, Washington DC (1972)

  21. Rademacher, H., Whiteman, A.: Theorems on Dedekind sums. Am. J. Math. 63, 377–407 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  22. Riemann, B.: Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge. Based on the edition by Heinrich Weber and Richard Dedekind. Edited and with a preface by Raghavan Narasimhan. Springer, Berlin. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, vi+911 pp (1990)

  23. Weil, A.: On some exponential sums. Proc. Nath. Acad. USA 34, 204–207 (1948)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosheng Xiong.

Additional information

A. Zaharescu is supported by National Science Foundation Grant DMS-0456615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alkan, E., Xiong, M. & Zaharescu, A. Quotients of values of the Dedekind Eta function. Math. Ann. 342, 157–176 (2008). https://doi.org/10.1007/s00208-008-0228-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-008-0228-1

Mathematics Subject Classification (2000)