Abstract
Inspired by Riemann’s work on certain quotients of the Dedekind Eta function, in this paper we investigate the value distribution of quotients of values of the Dedekind Eta function in the complex plane, using the form \({\frac{\eta(A_jz)} {\eta(A_{j-1}z)}}\) , where A j-1 and A j are matrices whose rows are the coordinates of consecutive visible lattice points in a dilation XΩ of a fixed region Ω in \({\mathbb{R}^2}\) , and z is a fixed complex number in the upper half plane. In particular, we show that the limiting distribution of these quotients depends heavily on the index of Farey fractions which was first introduced and studied by Hall and Shiu. The distribution of Farey fractions with respect to the value of the index dictates the universal limiting behavior of these quotients. Motivated by chains of these quotients, we show how to obtain a generalization, due to Zagier, of an important formula of Hall and Shiu on the sum of the index of Farey fractions.
Similar content being viewed by others
References
Alkan, E., Ledoan, A.H., Zaharescu, A.: Dirichlet L-functions and the index of visible points. Ill. J. Math. 51(2), 455–477 (2007)
Alkan, E., Ledoan, A.H., Vajaitu, M., Zaharescu, A.: On the index of fractions with square-free denominators in arithmetic progressions (to appear in Ramanujan J)
Augustin, V., Boca, F.P., Cobeli, C., Zaharescu, A.: The h spacing distribution between Farey points. Math. Proc. Camb. Phil. Soc. 131, 23–38 (2001)
Berndt, B.C.: Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Am. Math. Soc. 178, 495–508 (1973)
Berndt, B.C.: Character transformation formulae similar to those for the Dedekind eta-function. In: Proceedings Symposium Pure Math., vol. 24, pp. 9–30. Am. Math. Soc., Providence (1973)
Berndt, B.C.: Reciprocity theorems for Dedekind sums and generalizations. Adv. Math. 23(3), 285–316 (1977)
Boca, F.P., Cobeli, C., Zaharescu, A.: A conjecture of R. R. Hall on Farey points. J. Reine Angew. Math. 535, 207–236 (2001)
Boca, F.P., Cobeli, C., Zaharescu, A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213(2), 433–470 (2000)
Boca, F.P., Gologan, R.N., Zaharescu, A.: On the index of Farey sequences. Q. J. Math. 53(4), 377–391 (2002)
Carlitz, L.: Some theorems on generalized Dedekind sums. Pac. J. Math. 3, 513–522 (1953)
Carlitz, L.: The reciprocity theorem for Dedekind sums. Pac. J. Math. 3, 523–527 (1953)
Carlitz, L.: A note on generalized Dedekind sums. Duke Math. J. 21, 399–404 (1954)
Carlitz, L.: Generalized Dedekind sums. Math. Z. 85, 83–90 (1964)
Carlitz, L.: Linear relations among generalized Dedekind sums. J. Reine Angew. Math. 280, 154–162 (1965)
Estermann, T.: On Kloosterman’s sums. Mathematika 8, 83–86 (1961)
Hall, R.R., Shiu, P.: The index of a Farey sequence. Mich. Math. J. 51(2), 209–223 (2003)
Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. The Clarendon Press/Oxford University Press, Oxford/New York (1979)
Martin, Y.: Multiplicative η-quotients. Trans. Am. Math. Soc. 348(12), 4825–4856 (1996)
Martin, Y., Ono, K.: Eta-quotients and elliptic curves. Proc. Am. Math. Soc. 125(11), 3169–3176 (1997)
Rademacher, H., Grosswald, E.: Dedekind sums. The Carus Mathematical Monographs, vol. 16. The Mathematical Association of America, Washington DC (1972)
Rademacher, H., Whiteman, A.: Theorems on Dedekind sums. Am. J. Math. 63, 377–407 (1941)
Riemann, B.: Gesammelte mathematische Werke, wissenschaftlicher Nachlass und Nachträge. Based on the edition by Heinrich Weber and Richard Dedekind. Edited and with a preface by Raghavan Narasimhan. Springer, Berlin. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, vi+911 pp (1990)
Weil, A.: On some exponential sums. Proc. Nath. Acad. USA 34, 204–207 (1948)
Author information
Authors and Affiliations
Corresponding author
Additional information
A. Zaharescu is supported by National Science Foundation Grant DMS-0456615.
Rights and permissions
About this article
Cite this article
Alkan, E., Xiong, M. & Zaharescu, A. Quotients of values of the Dedekind Eta function. Math. Ann. 342, 157–176 (2008). https://doi.org/10.1007/s00208-008-0228-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00208-008-0228-1