Skip to main content
Log in

Covering theorems, inequalities on metric spaces and applications to PDE’s

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish a covering lemma of Besicovitch type for metric balls in the setting of Hölder quasimetric spaces of homogenous type and use it to prove a covering theorem for measurable sets. For families of measurable functions, we introduce the notions of power decay, critical density and double ball property and with the aid of the covering theorem we show how these notions are related. Next we present an axiomatic procedure to establish Harnack inequality that permits to handle both divergence and non divergence linear equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aimar, H., Forzani, L., Toledano, R.: Holder regularity of solutions of PDE’s: a geometrical view. Commun. Partial Differ. Equ. 26, 1145–1173 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aimar, H.: Singular integral and approximate identities on spaces of homogeneous type. Trans. Am. Math. Soc. 292(1), 135–153 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biroli, M., Mosco, U.: Sobolev inequalities on homogeneous spaces. Pot. Anal. 4, 311–324 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Buckley, S.M.: Inequalities of John–Nirenberg type in doubling spaces. J. Anal. Math. 79, 215–240 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A.: Interior a priori estimates for solutions of fully nonlinear elliptic equations. Ann. Math. 130, 189–213 (1989)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L.A., Cabrè, X.: Fully nonlinear elliptic equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 1995

  7. Caffarelli, L.A., Gutièrrez, C.E.: Real analysis related to the Monge–Ampère equation. Trans. Am. Math. Soc. 348(3), 1075–1092 (1996)

    Article  MATH  Google Scholar 

  8. Caffarelli, L.A., Gutièrrez, C.E.: Properties of the solutions of the linearized Monge–Ampère equation. Am. J. Math. 119(2), 423–465 (1997)

    Article  MATH  Google Scholar 

  9. Coifman, R., Weiss, G.: Analyse Harmonique Non-commutative Sur Certains Espaces Homogenes, volume 242 of Lecture Notes in Mathematics. Springer, Berlin-New York, 1971

  10. Danielli, D., Garofalo, N., M-Nhieu, D.: Trace inequality for Carnot-Carathèodory distance. Ann. Scuola Norm. Sup. Pisa 27, 195–152 (1998)

    MATH  Google Scholar 

  11. Franchi, B., Lanconelli, E.: Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10(4), 523–541 (1983)

    MATH  MathSciNet  Google Scholar 

  12. Gutièrrez, C.E., Lanconelli, E.: Maximum principle, Harnack inequality, and Liouville theorems for X-elliptic operators. Commun. Partial Differ. Equ. 28(11–12), 1883–1862 (2003)

    Google Scholar 

  13. Garofalo, N., M-Nhieu, D.: Isoperimetric and Sobolev inequalities for Carnot-Carathèodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49, 1081–1144 (1996)

    Article  MATH  Google Scholar 

  14. Gutièrrez, C.E.: A covering lemma of Besicovitch type on the Heisenberg group H n. unpublished manuscript, 1998

  15. Gutièrrez, C.E.: The Monge–Ampère equation. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  16. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, Berlin-New York (2001)

    MATH  Google Scholar 

  17. Hajlasz, P., Koskela, P.: Sobolev met Poincarè. In Memoirs of the American Mathematical Society 145, AMS (2000)

  18. Han, Q., Lin, F-H.: Elliptic partial differential equations. In: Courant Lecture Notes in Mathematics, volume 1. Courant Institute (1997)

  19. Korànyi, A., Reimann, H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group. Adv. Math. 111(1), 1–87 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kinnunen, J., Shanmugalingam, N.: Regularity of quasi-minimizers on metric spaces. Manuscr. Math. 105, 401–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mosco, U.: Energy functionals on certain fractal structures. J. Convex Anal. 9(2), 581–600 (2002)

    MATH  MathSciNet  Google Scholar 

  22. Mosco, U.: Harnack inequalities on recurrent metric fractals. Proc. Steklov Inst. Math 326, 490–495 (2002)

    Google Scholar 

  23. Macias, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33, 257–270 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Rigot, S.: Counter example to the Besicovitch covering property for some Carnot groups equipped with their Carnot Carath eodory metric. Math. Z. 248(4), 827–848 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian E. Gutièrrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Fazio, G., Gutièrrez, C.E. & Lanconelli, E. Covering theorems, inequalities on metric spaces and applications to PDE’s. Math. Ann. 341, 255–291 (2008). https://doi.org/10.1007/s00208-007-0188-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-007-0188-x

Keywords

Navigation