Skip to main content
Log in

Morse Novikov theory and cohomology with forward supports

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We present a new approach to Morse and Novikov theories, based on the deRham Federer theory of currents, using the finite volume flow technique of Harvey and Lawson [HL]. In the Morse case, we construct a noncompact analogue of the Morse complex, relating a Morse function to the cohomology with compact forward supports of the manifold. This complex is then used in Novikov theory, to obtain a geometric realization of the Novikov Complex as a complex of currents and a new characterization of Novikov Homology as cohomology with compact forward supports. Two natural ``backward-forward'' dualities are also established: a Lambda duality over the Novikov Ring and a Topological Vector Space duality over the reals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Austin, D., Braam, P.J.: Morse Bott Theory and equivariant cohomology. In: The Floer Memorial Volume. Birkhauser, 1994

  2. Bourbaki, N.: Commutative Algebra Chap. 1–7. Springer-Verlag

  3. Bott, R.: Morse Theory Indomitable. Publ. Math. IHES 68, 99–114 (1988)

    MATH  MathSciNet  Google Scholar 

  4. De Rham, G.: Differentiable manifolds. Forms, currents, harmonic forms. GMW 266. Springer-Verlag, 1984

  5. Farber, M.: Exactness of the Novikov inequalities. Functional Anal. Appl. 19, 40–48 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Farber, M.: Topology of closed one-forms. Mathematical Surveys and Monographs 108. AMS, 2004

  7. Farber, M., Ranicki, A.: The Morse Novikov theory of circle valued functions and noncommutative localization. Tr. Math. Inst. Steklova 225 381–388 (1999)

    Google Scholar 

  8. Federer, H.: Geometric measure theory, GMW 153. Springer-Verlag, 1969

  9. Floer, A.: Witten's complex and infinite dimensional Morse theory. J. diff. geom. 30, 207–221 (1989)

    MATH  MathSciNet  Google Scholar 

  10. Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris, 1973

  11. Harvey, C., Harvey, F.R.: Open mappings and the lack of fully completeness of Proc. AMS 25, 786–790 (1970)

    MATH  MathSciNet  Google Scholar 

  12. Harvey, F.R., Lawson, H.B.: Finite volume flows and Morse theory. Ann. of Math. 153, 1–25 (2001)

    MATH  MathSciNet  Google Scholar 

  13. Harvey, F.R., Polking, J.: Fundamental solutions in complex analysis, Part I. Duke Math. J. 46, 253–300 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Harvey, F.R., Zweck, J.: Stiefel-Whitney currents. J. Geom. Anal. 8(5), 805–840 (1998)

    Google Scholar 

  15. Kelley, J., Namioka, I.: Linear Topological Spaces. Van Nostrand, 1963

  16. Latour, F.: Existence de 1-formes fermée non singulières dans une classe de cohomologie de de Rham. Publ. Math. IHES 80, 135–194 (1994)

    MathSciNet  Google Scholar 

  17. Laudenbach, F.: On the Thom-Smale complex. (appendix) Asterisque 205, (1992)

  18. Latschev, J.: Gradient flows of Morse-Bott functions. Math. Ann. 318(4), 731–759 (2000)

    Article  MathSciNet  Google Scholar 

  19. Minervini, G.: A current approach to Morse and Novikov theories, PhD thesis, Università ``La Sapienza'', Roma, 2003

  20. Novikov, S.P.: Multivalued functions and functionals. An analogue of the Morse theory. Sov. Math. Dolklady 24, 222–226 (1981)

    MATH  Google Scholar 

  21. Novikov, S.P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Russ. Math. Survey 37(5), 1–56 (1982)

    Article  Google Scholar 

  22. Pajitnov, A.V.: Counting closed orbits of Gradients of Circle Valued Maps, arXiv preprint DG/0104273 v2 (2002)

  23. Pajitnov, A.V.: On the sharpness of Novikov type inequalities for manifolds with free abelian fundamental group. Math. USSR Sbornik 68(2), 351–389 (1991)

    Article  Google Scholar 

  24. Pajitnov, A.V.: On the Novikov complex for rational Morse forms, preprint Odense University 12 (1991), reprinted in Ann. Fac. Sci. Toul. 4(2), 297–338 (1995)

    Google Scholar 

  25. Ranicki, A.: Circle Valued Morse Theory and Novikov Homology, e-print AT.0111317 (2001)

  26. Shilnikov, L., et al.: Methods of non qualitative theory in nonlinear dynamics Part I. Nonlinear Science, World Scientific, 1998

  27. Schutz, D.: Gradient flows of closed 1-forms and their closed orbits. Forum Math. 14, 509–703 (2002)

    Article  MathSciNet  Google Scholar 

  28. Schutz, D.: Controlled connectivity of closed 1-forms. Alg. Geom. Top. 2, 177–217 (2002)

    MathSciNet  Google Scholar 

  29. Smale, S.: On gradient dynamical systems. Ann. of Math. 74(2), 199–206 (1961)

    Article  MathSciNet  Google Scholar 

  30. Thom, R.: Sur une partition en cellules associée à une function sur une variété. C.R. Acad. Sci. Paris 228, 973–975 (1949)

    MATH  MathSciNet  Google Scholar 

  31. Treves, F.: Topological Vector Spaces. Distributions and Kernels. Academic Press, 1967

  32. Witten, E.: Supersymmetry and Morse Theory. J. diff. geom. 17, 661–692 (1982)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Reese Harvey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reese Harvey, F., Minervini, G. Morse Novikov theory and cohomology with forward supports. Math. Ann. 335, 787–818 (2006). https://doi.org/10.1007/s00208-006-0765-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0765-4

Keywords

Navigation