Skip to main content
Log in

On topologically finite-dimensional simple C*-algebras

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We show that, if a simple C*-algebra A is topologically finite-dimensional in a suitable sense, then not only K0(A) has certain good properties, but A is even accessible to Elliott’s classification program. More precisely, we prove the following results:

If A is simple, separable and unital with finite decomposition rank and real rank zero, then K0(A) is weakly unperforated.

If A has finite decomposition rank, real rank zero and the space of extremal tracial states is compact and zero-dimensional, then A has stable rank one and tracial rank zero. As a consequence, if B is another such algebra, and if A and B have isomorphic Elliott invariants and satisfy the Universal coefficients theorem, then they are isomorphic.

In the case where A has finite decomposition rank and the space of extremal tracial states is compact and zero-dimensional, we also give a criterion (in terms of the ordered K0-group) for A to have real rank zero. As a byproduct, we show that there are examples of simple, stably finite and quasidiagonal C*-algebras with infinite decomposition rank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blackadar, B.: K-Theory for Operator Algebras, 2nd edition, MSRI Publications 5. Cambridge University Press, 1998

  2. Blackadar, B., Kirchberg, E.: Generalized inductive limits of finite-dimensional C*-algebras. Math. Ann. 307, 343–380 (1997)

    Google Scholar 

  3. Blackadar, B., Kirchberg, E.: Inner quasidiagonality and strong NF algebras. Pacific J. Math. 198 , 307–329 (2001)

    Google Scholar 

  4. Brown, L.G., Pedersen, G.K.: C*-algebras of real rank zero. J. Funct. Anal. 99 (1991), 131–149

    Google Scholar 

  5. Brown, N.: Invariant means and finite representation theory of C*-algebras. preprint math.OA/0304009v1, 2003

  6. Elliott, G.A.: On the classification of inductive limits of sequences of semi-simple finite-dimensional algebras. J. Algebra 38, 29–44 (1976)

    Google Scholar 

  7. Elliott, G.A.: An invariant for simple C*-algebras. Canadian Mathematical Society 1945–1995, vol. 3, Canadian Math. Soc., Ottawa, ON, 1996, pp. 61–90

  8. Goodearl, K.R.: Partially Ordered Groups with Interpolation, Mathematical Surveys and Monographs 20. AMS, Providence, RI, 1986

  9. Hurewicz, W., Wallmann, H.: Dimension Theory. Princeton University Press, Princeton 1941

  10. Jiang, X., Su, H.: On a simple unital projectionless C*-algebra. Amer. J. Math. 121, 359–413 (1999)

    Google Scholar 

  11. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras I. Academic Press, New York, 1983

  12. Kirchberg, E., Winter, W.: Covering dimension and quasidiagonality. Intern. J. Math. 15, 63–85 (2004)

    Google Scholar 

  13. Lin, H.: Tracially AF C*-algebras. Trans. Amer. Math. Soc. 353, 693–722 (2001)

    Google Scholar 

  14. Lin, H.: The tracial topological rank of C*-algebras. Proc. London Math. Society 83, 199–234 (2001)

    Google Scholar 

  15. Lin, H.: Classification of simple tracially AF C*-algebras. Canad. J. Math. 53, 161–194 (2001)

    Google Scholar 

  16. Lin, H.: Traces and simple C*-algebras with tracial topological rank zero. J. Reine Angew. Math. 568, 99–137 (2004)

    Google Scholar 

  17. Loring, T.A.: Lifting Solutions to Perturbing Problems in C*-Algebras. Fields Institute Monographs 8, AMS, Providence, RI, 1997

  18. Pedersen, G. K.: C*-Algebras and their automorphism groups. Academic Press, London, 1979

  19. Perera, F., Rørdam, M.: AF-embeddings into C*-algebras of real rank zero. J. Funct. Anal. 217, 142–170 (2004)

    Google Scholar 

  20. Rieffel, M.A.: Dimension and stable rank in the K-theory of C*-algebras. Proc. London Math. Soc. 46, 301–333 (1983)

    Google Scholar 

  21. Rørdam, M.: Classification of Nuclear C*-Algebras. Encyclopaedia of Mathematical Sciences 126, Springer, Berlin, Heidelberg 2002

  22. Takesaki, M.: Theory of Operator Algebras I, Springer Verlag, New York, 1979

  23. Toms, A.S.: On the independence of K-theory and stable rank for simple C*-algebras. J. Reine Angew. Math. 578, 185–199 (2005)

    MathSciNet  Google Scholar 

  24. Toms, A.S., Winter, W.: Strongly self-absorbing C*-algebras. Preprint math.OA/0502211 (2005)

  25. Toms, A.S., Winter, W.: -stable ASH algebras. In preparation

  26. Villadsen, J.: On the stable rank of simple C*-algebras. J. Amer. Math. Soc. 12, 1091–1102 (1999)

    Google Scholar 

  27. Voiculescu, D.: Around quasidiagonal operators. Integr. Equat. Oper. Th. 17, 137–149 (1993)

    Google Scholar 

  28. Winter, W.: Covering dimension for nuclear C*-algebras. J. Funct. Anal. 199, 535–556 (2003)

    Google Scholar 

  29. Winter, W.: Covering dimension for nuclear C*-algebras II. Preprint math.OA/0108102 (2001)

  30. Winter, W.: Decomposition rank of subhomogeneous C*-algebras. Proc. London Math. Soc. 89, 427–456 (2004)

    Google Scholar 

  31. Winter, W.: On the classification of simple -stable C*-algebras with real rank zero and finite decomposition rank. Preprint math.OA/0502181 (2005)

  32. Zhang, S.: Matricial structure homotopy type of simple C*-algebras with real rank zero. J. Operator Theory 26, 283–312 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Winter.

Additional information

Supported by: EU-Network Quantum Spaces - Noncommutative Geometry (Contract No. HPRN-CT-2002-00280) and Deutsche Forschungsgemeinschaft (SFB 478).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winter, W. On topologically finite-dimensional simple C*-algebras. Math. Ann. 332, 843–878 (2005). https://doi.org/10.1007/s00208-005-0657-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-005-0657-z

Mathematics Subject Classification (2000)

Navigation