Skip to main content
Log in

Pointwise Estimates for Bipolar Compressible Navier–Stokes–Poisson System in Dimension Three

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The Cauchy problem of the bipolar Navier–Stokes–Poisson system (1.1) in dimension three is considered. We obtain the pointwise estimates of the time-asymptotic shape of the solution, which exhibit a generalized Huygens’ principle as the Navier–Stokes system. This phenomenon is the most important difference from the unipolar Navier–Stokes–Poisson system. Due to the non-conservative structure of the system (1.1) and the interplay of two carriers which counteract the influence of the electric field (a nonlocal term), some new observations are essential for the proof. We fully use the conservative structure of the system for the total density and total momentum, and the mechanism of the linearized unipolar Navier–Stokes–Poisson system together with the special form of the nonlinear terms in the system for the difference of densities and the difference of momentums. Lastly, as a byproduct, we extend the usual \({L^2({\mathbb{R}}^3)}\)-decay rate to the \({L^p({\mathbb{R}}^3)}\)-decay rate with \({p > 1}\) and also improve former decay rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Degond, P.: Mathematical modelling of microelectronics semiconductor devices//Some Current Topics on Nonlinear Conservation Laws, AMS/IP Stud. Adv. Math. 15. American Mathematical Society, Providence, pp. 77–110, 2000

  2. Duan R.J., Ukai S., Yang T., Zhao H.J.: Optimal convergence rates for the compressible Navier–Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Duan R.J., Liu H.X., Ukai S., Yang T.: Optimal \({L^p-L^q}\) convergence rates for the compressible Navier–Stokes equations with potential force. J. Differ. Equ. 238, 220–233 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44(2), 603–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hoff D., Zumbrun K.: Pointwise decay estimates for multidimensional Navier–Stokes diffusion Waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang F.M., Li J., Matsumura A.: Asymptotic stability of combination of viscous contact wave with rarefaction waves for one-dimensional compressible Navier–Stokes system. Arch. Ration. Mech. Anal. 197, 89–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang F.M., Matsumura A., Xin Z.P.: Stability of contact discontinuities for the 1-D compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 179, 55–77 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kanel Y.I.: Cauchy problem for the equations of gas dynamics with viscosity. Sib. Math. J. 20, 208–218 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawashima, S.: System of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Manetohydrodynamics, Thesis, Kyoto University, Kyoto, 1983

  10. Kawashima S., Matsumura A.: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101, 97–127 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kawashima S., Nishida T.: Global solutions to the initial value problem for the equations of one dimensional motion of viscous polytropic gases. J. Math. Kyoto Univ. 21, 825–837 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kobayashi T., Shibata Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in \({{\mathbb{R}}^3}\). Commun. Math. Phys. 200, 621–659 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Li H.L., Zhang T.: Large time behavior of solutions to 3D compressible Navier–Stokes–Poisson system. Sci. China Math. 55(1), 159–177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li H.L., Matsumura A., Zhang G.J.: Optimal decay rate of the compressible Navier–Stokes–Poisson system in \({R^3}\). Arch. Ration. Mech. Anal. 196, 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H.L., Yang, T., Zou C.: Time asymptotic behavior of the bipolar Navier–Stokes–Poisson system. Acta Math. Sci. 29B(6), 1721–1736, 2009

  16. Liu T.P.: Pointwise convergence to shock waves for viscous conservation laws. Commun. Pure Appl. Math. 50, 1113–1182 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu T.P., Noh S.E.: Wave propagation for the compressible Navier–Stokes equations. J. Hyperb. Differ. Equ. 12, 385–445 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu T.P., Wang W.K.: The pointwise estimates of diffusion wave for the Navier–Stokes systems in odd multi-dimension. Commun. Math. Phys. 196, 145–173 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Liu T.P., Xin Z.P.: Nonlinear stability of rarefaction waves for compressible Navier–Stokes equations. Commun. Math. Phys. 118, 451–465 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Liu T.P., Yu S.H.: The Green’s function and large-time behavior of solutions for one dimensional Boltzmann equation. Commun. Pure Appl. Math. 57, 1543–1608 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu T.P., Yu S.H.: Green’s function of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sin. 1(1), 1–78 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Liu T.P., Yu S.H.: Initial-boundary value problem for one-dimensional wave solutions of the Boltzmann equation. Commun. Pure Appl. Math. 60(3), 295–356 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu T.P., Yu S.H.: Solving Boltzmann equation, part I: Green’s function. Bull. Inst. Math. Acad. Sin. 6, 115–243 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Liu, T.P., Yu, S.H.: Dirichlet-Neumann Kernel for hyperbolic-dissipative system in half space. Bull. Inst. Math. Acad. Sin. 4, 1477–543 (2012)

  25. Liu, T.P., Zeng, Y.N.: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Am. Math. Soc. 599, 1–45, 1997

  26. Liu, T.P., Zeng, Y.N.: Shock waves in conservation laws with physical viscosity. Mem. Am. Math. Soc. 234(1105). 2015. doi:10.1090/memo/1105

  27. Matsumura A., Nishida T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matsumura A., Nishida T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto. Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Okada M., Kawashima S.: On the equations of one-dimensional motion of compressible viscous fluids. J. Math. Kyoto Univ. 23, 55–71 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ukai S., Yang T., Yu S.H.: Nonlinear boundary layers of the Boltzmann equation. I. Existence. Commun. Math. Phys. 236, 373–393 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Wang Y.J.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253(1), 273–297 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wang W.K., Wu Z.G.: Pointwise estimates of solution for the Navier–Stokes–Poisson equations in multi-dimensions. J. Differ. Equ. 248, 1617–1636 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wang W.K., Yang T.: The pointwise estimates of solutions for Euler-Equations with damping in multi-dimensions. J. Differ. Equ. 173, 410–450 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Wang, W.K., Xu, X.: The decay rate of solution for the bipolar Navier–Stokes–Poisson system. J. Math. Phys. 55(9), 091502, 2014

  35. Wu Z.G., Wang W.K.: Pointwise estimates of solution for non-isentropic Navier–Stokes–Poisson equations in multi-dimensions. Acta Math. Sci. 32B(5), 1681–1702 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Wu Z.G., Wang W.K.: Large time behavior and pointwise estimates for compressible Euler equations with damping. Sci. China Math. 58(7), 1397–1414 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu Z.G., Wang W.K.: Refined pointwise estimates for the Navier–Stokes–Poisson equations. Anal. Appl. 15(5), 739–762 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yu S.H.: Nonlinear wave propagation over a Boltzmann shock profile. J. Am. Math. Soc. 23(4), 1040–1118 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zeng Y.N.: \({L^1}\) Asymptotic behavior of compressible isentropic viscous 1-D flow. Commun. Pure Appl. Math. 47, 1053–1082 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zeng Y.N.: Thermal non-equilibrium flows in three space dimensions. Arch. Ration. Mech. Anal. 219, 27–87 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang G.J., Li H.L., Zhu C.J.: Optimal decay rate of the non-isentropic Navier–Stokes–Poisson system in \({R^3}\). J Differ. Equ. 250(2), 866–891 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zou C.: Large time behaviors of the isentropic bipolar compressible Navier–Stokes–Poisson system. Acta Math. Sci. 31(5), 1725–1740 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weike Wang.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Wang, W. Pointwise Estimates for Bipolar Compressible Navier–Stokes–Poisson System in Dimension Three. Arch Rational Mech Anal 226, 587–638 (2017). https://doi.org/10.1007/s00205-017-1140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1140-1

Navigation