Skip to main content
Log in

Uniqueness and Long Time Asymptotic for the Keller–Segel Equation: The Parabolic–Elliptic Case

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The present paper deals with the parabolic–elliptic Keller–Segel equation in the plane in the general framework of weak (or “free energy”) solutions associated to initial datum with finite mass M, finite second moment and finite entropy. The aim of the paper is threefold:

  1. (1)

    We prove the uniqueness of the “free energy” solution on the maximal interval of existence [0,T*) with T* = ∞ in the case when M ≦ 8π and T* < ∞ in the case when M > 8π. The proof uses a DiPerna–Lions renormalizing argument which makes it possible to get the “optimal regularity” as well as an estimate of the difference of two possible solutions in the critical L 4/3 Lebesgue norm similarly to the 2d vorticity Navier–Stokes equation.

  2. (2)

    We prove the immediate smoothing effect and, in the case M < 8π, we prove the Sobolev norm bound uniformly in time for the rescaled solution (corresponding to the self-similar variables).

  3. (3)

    In the case M < 8π, we also prove the weighted L 4/3 linearized stability of the self-similar profile and then the universal optimal rate of convergence of the solution to the self-similar profile. The proof is mainly based on an argument of enlargement of the functional space for semigroup spectral gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arkeryd L.: Stability in L 1 for the spatially homogeneous Boltzmann equation. Arch. Rational Mech. Anal. 103(2), 151–167 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Arkeryd L., Esposito R., Pulvirenti M.: The Boltzmann equation for weakly inhomogeneous data. Commun. Math. Phys. 111(3), 393–407 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Beckner W.: Sharp Sobolev inequalities on the sphere and the Moser–Trudinger inequality. Ann. Math. (2) 138(1), 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Artzi M.: Global solutions of two-dimensional Navier–Stokes and Euler equations. Arch. Rational Mech. Anal. 128(4), 329–358 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Biler P., Karch G., Laurençot P., Nadzieja T.: The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29(13), 1563–1583 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Blanchet A., Carrillo J.A., Masmoudi N.: Infinite time aggregation for the critical Patlak–Keller–Segel model in \({{\mathbb{R}^{2}}}\). Commun. Pure Appl. Math. 61, 1449–1481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanchet A., Dolbeault J., Escobedo M., Fernández J.: Asymptotic behaviour for small mass in the two-dimensional parabolic–elliptic Keller–Segel model. J. Math. Anal. Appl. 361(2), 533–542 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44 (2006, electronic)

  9. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise (Collection of Applied Mathematics for the Master’s Degree). Théorie et applications (Theory and applications). Masson, Paris, 1983

  10. Brezis H.: Remarks on the preceding paper by M. Ben-Artzi: “Global solutions of two-dimensional Navier–Stokes and Euler equations”. Arch. Rational Mech. Anal. 128(4), 329–358 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cáceres M.J., Cañizo J.A., Mischler S.: Rate of convergence to self-similarity for the fragmentation equation in L 1 spaces. Commun. Appl. Ind. Math. 1(2), 299–308 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Cáceres M.J., Cañizo J.A., Mischler S.: Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations. J. Math. Pures Appl. (9) 96(4), 334–362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caglioti E., Lions P.-L., Marchioro C., Pulvirenti M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143(3), 501–525 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Caglioti E., Lions P.-L., Marchioro C., Pulvirenti M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Commun. Math. Phys. 174(2), 229–260 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Calvez V., Carrillo J.A.: Refined asymptotics for the subcritical Keller–Segel system and related functional inequalities. Proc. Am. Math. Soc. 140(10), 3515–3530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Campos J., Dolbeault J.: A functional framework for the Keller–Segel system: logarithmic Hardy–Littlewood–Sobolev and related spectral gap inequalities. C. R. Math. Acad. Sci. Paris 350(21–22), 949–954 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Campos J.F., Dolbeault J.: Asymptotic estimates for the parabolic–elliptic Keller–Segel model in the plane. Commun. Partial Differ. Equ. 39(5), 806–841 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carlen E., Loss M.: Competing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n. Geom. Funct. Anal. 2(1), 90–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Carrapatoso, K., Mischler, S.: Uniqueness and long time asymptotic for the parabolic–parabolic Keller–Segel equation. arXiv:1406.6006

  20. Carrillo J.A., Lisini S., Mainini E.: Uniqueness for Keller–Segel-type chemotaxis models. Discrete Contin. Dyn. Syst. 34(4), 1319–1338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, Vol. 194. Springer, New York, 2000 (with contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt)

  23. Fournier N., Hauray M., Mischler S.: Propagation of chaos for the 2d viscous vortex model. J. Eur. Math. Soc. (JEMS), 16(7), 1423–1466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gajewski H., Zacharias K.: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization of non-symmetric operators and exponential H-theorem. hal-00495786

  26. Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin, 1995 (reprint of the 1980 edition)

  27. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  28. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, Vol. 14. American Mathematical Society, Providence, 1997

  29. Mischler S., Mouhot C.: Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres. Commun. Math. Phys. 288(2), 431–502 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mischler, S., Scher, J.: Semigroup spectral analysis and growth-fragmentation equations. Annales de l’Institut Henri Poincaré (2015, to appear). arXiv:1310.7773.

  31. Mischler, S., Mouhot, C.: Exponential stability of slowly decaying solutions to the Kinetic-Fokker–Planck equation. arXiv:1412.7487

  32. Mouhot C.: Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Commun. Math. Phys. 261(3), 629–672 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Naito, Y.: Symmetry results for semilinear elliptic equations in \({{\mathbb{R}^{2} }}\). In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 6 (Catania, 2000), Vol. 47, pp. 3661–3670, 2001

  34. Patlak C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pazy A.: Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, Vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  36. Wennberg B.: Stability and exponential convergence for the Boltzmann equation. Arch. Rational Mech. Anal. 130(2), 103–144 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Mischler.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egaña Fernández, G., Mischler, S. Uniqueness and Long Time Asymptotic for the Keller–Segel Equation: The Parabolic–Elliptic Case. Arch Rational Mech Anal 220, 1159–1194 (2016). https://doi.org/10.1007/s00205-015-0951-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0951-1

Keywords

Navigation