Skip to main content
Log in

Dynamical Compact Elastic Bodies in General Relativity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the local existence of solutions to the Einstein-Elastic equations that represent self-gravitating, relativistic elastic bodies with compact support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.: Sobolev spaces, 2nd edn. Academic Press, New York, 2003

  2. Andersson L., Oliynyk T.A.: A transmission problem for quasi-linear wave equations. J. Differ. Equ. 256, 2023–2078 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andersson L., Schmidt B.G., Beig R.: Static self-gravitating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 61, 988–1023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersson L., Schmidt B.G., Beig R.: Rotating elastic bodies in Einstein gravity. Commun. Pure Appl. Math. 63, 559–589 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Andersson L., Schmidt B.G., Oliynyk T.A.: Dynamical elastic bodies in Newtonian gravity. Class. Quantum Grav. 28, 235006 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Beig R., Schmidt B.G.: Relativistic elasticity. Class. Quantum Grav. 20, 889–904 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Beig R., Wernig-Pichler M.: On the motion of a compact elastic body. Commun. Math. Phys. 271, 455–465 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Choquet-Bruhat Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  9. Choquet-Bruhat Y., Friedrich H.: Motion of isolated bodies. Class. Quantum Grav. 23, 5941–5949 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Coutand D., Hole J., Shkoller S.: Well-posedness of the free-boundary compressible 3-d Euler equations with surface tension and the zero surface tension limit. SIAM J. Math. Anal. 45, 3690–3767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coutand D., Shkoller S.: Well-posedness of the free-surface incompressible Euler equations with or without surface tension. J. Am. Math. Soc. 20, 829–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the moving-boundary three-dimensional compressible euler equations in physical vacuum. Arch. Rational Mech. Anal. 206, 515–616 (2012) (English)

  13. Fourès(Choquet)-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952) (French)

  14. Friedman, A.: Partial Differential Equations. Krieger Publishing Company, 1976

  15. Gundlach C., Hawke I., Erickson S.J.: A conservation law formulation of nonlinear elasticity in general relativity. Class. Quantum Grav. 29, 015005 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kind S., Ehlers J.: Initial boundary value problem for the spherically symmetric Einstein equations for a perfect fluid. Class. Quantum Grav. 18, 2123–2136 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. Koch H.: Mixed problems for fully nonlinear hyperbolic equations. Math. Z. 214, 9–42 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lindblad H.: Well posedness for the motion a compressible liquid with free surface boundary. Commun. Math. Phys. 260, 319–392 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Lindblad H.: Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. Math. 162, 109194 (2005)

    Article  MathSciNet  Google Scholar 

  20. Lindblad H., Nordgren K.H.: A priori estimates for the motion of a selfgravitating incompressible liquid with free surface boundary. JHDE 6, 407–432 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Lottermoser M.: A convergent post-Newtonian approximation for the constraint equations in general relativity. Annales de l’institut Henri Poincaré (A) Physique théorique 57, 279–317 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Oliynyk T.A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276, 131–188 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Oliynyk, T.A.: On the existence of solutions to the relativistic Euler equations in 2 spacetime dimensions with a vacuum boundary. Class. Quantum Grav. 29, 155013 (2012)

  24. Rendall A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys. 33, 1047–1053 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shibata, Y., Nakamura, G.: On a local existence theorem of Neumann problem for some quasilinear hyperbolic systems of 2nd order. Math. Z. 202, 1–64 (1989)

  26. Taylor M.E.: Partial Differential Equations III: Nonlinear Equations. Springer, Berlin (1996)

    MATH  Google Scholar 

  27. Trakhinin Y.: Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition. Commun. Pure Appl. Math. 62, 1151–1594 (2009)

    Article  MathSciNet  Google Scholar 

  28. van Elst, H., Ellis, G.F.R., Schmidt, B.G.: Propagation of jump discontinuities in relativistic cosmology. Phys. Rev. D 62(10), 104023 (2000)

  29. Wernig-Pichler, M.: Relativistic elastodynamics, Ph.D. thesis, Universität Wien, 1996. arXiv:gr-qc/0605025

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Oliynyk.

Additional information

Communicated by C. De Lellis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, L., Oliynyk, T.A. & Schmidt, B.G. Dynamical Compact Elastic Bodies in General Relativity. Arch Rational Mech Anal 220, 849–887 (2016). https://doi.org/10.1007/s00205-015-0943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0943-1

Keywords

Navigation