Skip to main content
Log in

The Optimal Decay Estimates on the Framework of Besov Spaces for Generally Dissipative Systems

  • Original Paper
  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We give a new decay framework for the general dissipative hyperbolic system and the hyperbolic–parabolic composite system, which allows us to pay less attention to the traditional spectral analysis in comparison with previous efforts. New ingredients lie in the high-frequency and low-frequency decomposition of a pseudo-differential operator and an interpolation inequality related to homogeneous Besov spaces of negative order. Furthermore, we develop the Littlewood–Paley pointwise energy estimates and new time-weighted energy functionals to establish optimal decay estimates on the framework of spatially critical Besov spaces for the degenerately dissipative hyperbolic system of balance laws. Based on the \({L^{p}(\mathbb{R}^{n})}\) embedding and the improved Gagliardo–Nirenberg inequality, the optimal \({L^{p}(\mathbb{R}^{n})-L^{2}(\mathbb{R}^{n})(1\leqq p < 2)}\) decay rates and \({L^{p}(\mathbb{R}^{n})-L^{q}(\mathbb{R}^{n})(1\leqq p < 2\leqq q\leqq \infty)}\) decay rates are further shown. Finally, as a direct application, the optimal decay rates for three dimensional damped compressible Euler equations are also obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin/Heidelberg, 2011

  2. Bianchini S., Hanouzet B., Natalini R.: Asymptotic behavior of smooth solutions for partially dissipative hyperoblic systems with a convex entropy. Commun. Pure Appl. Math. 60, 1559–1622 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Chen G.-Q., Levermore C.D., Liu T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47, 787–830 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics (Third Editor). Springer, Berlin, 2010

  6. Friedrichs K.O., Lax P.D.: Systems of conservation equations with a convex exttension. Proc. Natl. Acad. Sci. USA 68, 1686–1688 (1971)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Godunov S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139, 521–523 (1961)

    MathSciNet  Google Scholar 

  8. Gressman P.T., Strain R.M.: Global classical solutions of the Boltzmann equation without angular cut-off. J. Am. Math. Soc. 24, 771–847 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific Publishing, Singapore, 1997

  10. Hanouzet B., Natalini R.: Global existence of smooth solutions for partially disipative hyperbolic systems with a convex entropy. Arch. Rational Mech. Anal. 169, 89–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kato T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58, 181–205 (1975)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Kawashima, S.: Systems of a Hyperbolic–Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics. Doctoral Thesis, Kyoto University, 1984. http://repository.kulib.kyoto-u.ac.jp/dspace/handle/2433/97887

  14. Kawashima S., Yong W.-A.: Dissipative structure and entropy for hyperbolic systems of balance laws. Arch. Rational Mech. Anal. 174, 345–364 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Kawashima S., Yong W.-A.: Decay estimates for hyperbolic balance laws. J. Anal. Appl. 28, 1–33 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Majda, A.: Compressible Fluid Flow and Conservation laws in Several Space Variables. Springer, Berlin, 1984

  17. Matsumura, A.: An Energy Method for the Equations of Motion of Compressible Viscous and Heat-Conductive Fluids. MRC Technical Summary Report, University of Wisconsin-Masison, \({\sharp}\) 2194, 1981

  18. Nirenberg L.: On elliptic partial differential equation. Ann. Scu. Norm. Sup. Pisa, Ser. III 13, 115–162 (1959)

    MATH  MathSciNet  Google Scholar 

  19. Shizuta Y., Kawashima S.: Systems of equations of hyperbolic–parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nishida T.: Nonlinear hyperbolic equations and relates topics in fluid dynamics. Publ. Math. D’Orsay, 46(−53), 46–53 (1978)

    Google Scholar 

  21. Ruggeri T., Serre D.: Stability of constant equilibrium state for dissipative balance laws system with a convex entropy. Quart. Appl. Math. 62, 163–179 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Sohinger, V., Strain, R.M.: The Boltzmann equation, Besov spaces, and optimal time decay rates in \({\mathbb{R}^{n}_{x}}\) . Adv. Math. 261, 274–332 (2014)

  23. Sideris, T., Thomases, B., Wang, D.H.: Long time behavior of solutions to the 3D compressible Euler with damping. Communun. Part. Differ. Equ. 28, 953–978 (2003)

  24. Tan Z., Wang G.C.: Large time behavior of solutions for compressible Euler equations with damping in \({\mathbb{R}^{3}}\) . J. Differ. Equ. 252, 1546–1561 (2012)

  25. Ueda Y., Duan R.-J., Kawashima S.: Decay structure for symmetric hyperbolic systems with non-symmetric relaxation and its application. Arch. Rational Mech. Anal. 205, 239–266 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Umeda T., Kawashima S., Shizuta Y.: On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics. Japan J. Appl. Math. 1, 435–457 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wu J.H.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier–Stokes equations in Besov spaces. Commun. Math. Phys. 263, 803–831 (2005)

    Article  ADS  Google Scholar 

  28. Wang W., Yang T.: The pointwise estimates of solutions for Euler equations with damping in multi-dimensions. J. Differ. Equ. 173, 410–450 (2001)

    Article  MATH  ADS  Google Scholar 

  29. Xu J., Kawashima S.: Global classical solutions for partially dissipative hyperbolic system of balance laws. Arch. Rational Mech. Anal. 211, 513–553 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  30. Yong, W.-A.: Basic aspects of hyperbolic relaxation systems. Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Their Applications, Vol. 47 (Eds. Freistühler H. and Szepessy A.). Birkhäuser, Boston, 259–305, 2001

  31. Yong W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Rational Mech. Anal. 172, 247–266 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Zeng Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Rational Mech. Anal. 150, 225–279 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Xu.

Additional information

Communicated by T.-P. Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Kawashima, S. The Optimal Decay Estimates on the Framework of Besov Spaces for Generally Dissipative Systems. Arch Rational Mech Anal 218, 275–315 (2015). https://doi.org/10.1007/s00205-015-0860-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0860-3

Keywords

Navigation