Skip to main content
Log in

Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This work is concerned with the derivation of optimal scaling laws, in the sense of matching lower and upper bounds on the energy, for a solid undergoing ductile fracture. The specific problem considered concerns a material sample in the form of an infinite slab of finite thickness subjected to prescribed opening displacements on its two surfaces. The solid is assumed to obey deformation-theory of plasticity and, in order to further simplify the analysis, we assume isotropic rigid-plastic deformations with zero plastic spin. When hardening exponents are given values consistent with observation, the energy is found to exhibit sublinear growth. We regularize the energy through the addition of nonlocal energy terms of the strain-gradient plasticity type. This nonlocal regularization has the effect of introducing an intrinsic length scale into the energy. Under these assumptions, ductile fracture emerges as the net result of two competing effects: whereas the sublinear growth of the local energy promotes localization of deformation to failure planes, the nonlocal regularization stabilizes this process, thus resulting in an orderly progression towards failure and a well-defined specific fracture energy. The optimal scaling laws derived here show that ductile fracture results from localization of deformations to void sheets, and that it requires a well-defined energy per unit fracture area. In particular, fractal modes of fracture are ruled out under the assumptions of the analysis. The optimal scaling laws additionally show that ductile fracture is cohesive in nature, that is, it obeys a well-defined relation between tractions and opening displacements. Finally, the scaling laws supply a link between micromechanical properties and macroscopic fracture properties. In particular, they reveal the relative roles that surface energy and microplasticity play as contributors to the specific fracture energy of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubry S., Ortiz M. (2003) The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond. A 459: 3131–3158

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bai Y., Dodd B. (1992) Adiabatic Shear Localization: Occurrence, Theories, and Applications, 1st edn. Pergamon Press, Oxford

    Google Scholar 

  3. Ball J.M. (1982) Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. Ser. A 306(1496): 557–611

    Article  ADS  MATH  Google Scholar 

  4. Bassani J.L. (2001) Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids 49(9): 1983–1996

    Article  ADS  MATH  Google Scholar 

  5. Choksi R., Kohn R.V., Otto F. (1999) Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy. Commun. Math. Phys. 201: 61–79

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Considère A. (1885) Mémoire sur lemploi du fer et de lacier dans les constructions. Annales des Ponts et Chaussées 9: 574–775

    Google Scholar 

  7. Conti S. (2000) Branched microstructures: scaling and asymptotic self-similarity. Commun. Pure Appl. Math. 53: 1448–1474

    Article  MATH  MathSciNet  Google Scholar 

  8. Conti S., DeLellis C. (2003) Some remarks on the theory of elasticity for compressible neohookean materials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5(2): 521–549

    MathSciNet  Google Scholar 

  9. Conti S., Garroni A., Müller S. (2011) Singular kernels, multiscale decomposition of microstructure, and dislocation models. Arch. Rational Mech. Anal. 199(3): 779–819

    Article  ADS  MATH  Google Scholar 

  10. Conti S., Ortiz M. (2005) Dislocation microstructures and the effective behavior of single crystals. Arch. Rational Mech. Anal. 176: 103–147

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Fleck N.A., Hutchinson J.W. (1993) A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12): 1825–1857

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Fleck N.A., Hutchinson J.W. (1997) Strain gradient plasticity. Adv. Appl. Mech. 33: 295–361

    Article  Google Scholar 

  13. Fleck N.A., Hutchinson J.W. (2001) A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49(10): 2245–2271

    Article  ADS  MATH  Google Scholar 

  14. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W. (1994) Strain gradient plasticity—theory and experiment. Acta Metallurgica Et Materialia 42(2): 475–487

    Article  Google Scholar 

  15. Garrison W.M., Moody N.R. (1987) Ductile fracture. J. Phys. Chem. Solids 48: 1035–1074

    Article  ADS  Google Scholar 

  16. Garroni A., Leoni G., Ponsiglione M. (2010) Gradient theory for plasticity via homogenization of discrete dislocations. J. Eur. Math. Soc. 12(5): 1231–1266

    Article  MATH  MathSciNet  Google Scholar 

  17. Garroni A., Müller S. (2005) Gamma-limit of a phase-field model of dislocations. SIAM J. Math. Anal. 36(6): 1943–1964

    Article  MATH  MathSciNet  Google Scholar 

  18. Garroni A., Müller S. (2006) A variational model for dislocations in the line tension limit. Arch. Rational Mech. Anal. 181(3): 535–578

    Article  ADS  MATH  Google Scholar 

  19. Heller, A.: How metals fail. Science & Technology Review Magazine, Lawrence Livermore National Laboratory pp. 13–20, 2002

  20. Henao D., Mora-Corral C. (2010) Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity. Arch. Rational Mech. Anal. 197: 619–655

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Huang Y., Xue Z., Gao H., Nix W.D., Xia Z.C. (2000) A study of microindentation hardness tests by mechanism-based strain gradient plasticity. J. Mater. Res. 15(8): 1786–1796

    Article  ADS  Google Scholar 

  22. Kanninen M.F., Popelar C.H. (1985) Advanced fracture mechanics. Oxford Engineering Science Series. Oxford University Press, New York

    Google Scholar 

  23. Kohn R.V., Müller S. (1992) Branching of twins near an austenite-twinned-martensite interface. Phil. Mag. A 66: 697–715

    Article  ADS  Google Scholar 

  24. Kohn R.V., Müller S. (1994) Surface energy and microstructure in coherent phase transitions. Commun. Pure Appl. Math. 47: 405–435

    Article  MATH  Google Scholar 

  25. Kröner, E.: Mechanics of generalized continua. In: Proceedings of the IUTAM-symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) 1967. Springer, Berlin, 1968

  26. Kuroda M., Tvergaard V. (2008) A finite deformation theory of higher-order gradient crystal plasticity. J. Mech. Phys. Solids 56(8): 2573–2584

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Kuroda M., Tvergaard V. (2008) On the formulations of higher-order strain gradient crystal plasticity models. J. Mech. Phys. Solids 56(4): 1591–1608

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Kuroda M., Tvergaard V. (2010) An alternative treatment of phenomenological higher-order strain-gradient plasticity theory. Int. J. Plast. 26(4): 507–515

    Article  MATH  Google Scholar 

  29. Lubliner J. (1990) Plasticity Theory. Macmillan, New York

    MATH  Google Scholar 

  30. Martin J.B. (1975) Plasticity: fundamentals and general results. MIT Press, Cambridge

    Google Scholar 

  31. McClintock, F.A., Argon, A.S.: Mechanical behavior of materials. In: Addison-Wesley Series in Metallurgy and Materials. Addison-Wesley, Reading, 1966

  32. Mielke A., Ortiz M. (2008) A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var. 14(3): 494–516

    Article  MATH  MathSciNet  Google Scholar 

  33. Müller S., Spector S.J. (1995) An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal. 131: 1–66

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Needleman A., Tvergaard V., Bouchaud E. (2012) Prediction of ductile fracture surface roughness scaling. J. Appl. Mech. Trans. ASME 79: 3

    Article  Google Scholar 

  35. Nix W.D., Gao H.J. (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3): 411–425

    Article  ADS  MATH  Google Scholar 

  36. Ortiz M., Repetto E. (1999) Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47(2): 397–462

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Ortiz M., Repetto E., Stainier L. (2000) A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48: 2077–2114

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Pardoen T., Hutchinson J.W. (2003) Micromechanics-based model for trends in toughness of ductile metals. Acta Mater. 51(1): 133–148

    Article  Google Scholar 

  39. Rice J.R., Thomson R. (1974) Ductile versus brittle behavior of crystals. Philos. Mag. 29(1): 73–97

    Article  ADS  Google Scholar 

  40. Sverák V. (1988) Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100: 105–127

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Tvergaard V. (1982) Ductile fracture by cavity nucleation between larger voids. J. Mech. Phys. Solids 30(4): 265–286

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Tvergaard V. (1990) Material failure by void growth to coalescence. Adv. Appl. Mech. 27: 83–151

    Article  MATH  Google Scholar 

  43. Tvergaard V. (1992) A numerical-analysis of 3d localization failure by a void-sheet mechanism. Eng. Fract. Mech. 41(6): 787–803

    Article  Google Scholar 

  44. Xue Z., Huang Y., Gao F., Nix W.D. (2000) The strain gradient effects in micro-indentation hardness experiments. Multisc. Phenom. Mater. Exp. Model. 578: 53–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ortiz.

Additional information

Communicated by The Editors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokoua, L., Conti, S. & Ortiz, M. Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation. Arch Rational Mech Anal 212, 331–357 (2014). https://doi.org/10.1007/s00205-013-0687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0687-8

Keywords

Navigation