Skip to main content
Log in

On the Stability in Weak Topology of the Set of Global Solutions to the Navier–Stokes Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Let X be a suitable function space and let \({\mathcal{G} \subset X}\) be the set of divergence free vector fields generating a global, smooth solution to the incompressible, homogeneous three-dimensional Navier–Stokes equations. We prove that a sequence of divergence free vector fields converging in the sense of distributions to an element of \({\mathcal{G}}\) belongs to \({\mathcal{G}}\) if n is large enough, provided the convergence holds “anisotropically” in frequency space. Typically, this excludes self-similar type convergence. Anisotropy appears as an important qualitative feature in the analysis of the Navier–Stokes equations; it is also shown that initial data which do not belong to \({\mathcal{G}}\) (hence which produce a solution blowing up in finite time) cannot have a strong anisotropy in their frequency support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida A., Hästö P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5), 1628–1655 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auscher P., Dubois S., Tchamitchian P.: On the stability of global solutions to navier-stokes equations in the space. J. Math. Pures Appl. 83, 673–697 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. In: Grundlehren der mathematischen Wissenschaften, Springer, Berlin, 2011

  4. Bahouri H., Cohen A., Koch G.: A general wavelet-based profile decomposition in the critical embedding of function spaces. Confluentes Mathematici 3(3), 1–25 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bahouri H., Gérard P.: High frequency approximation of solutions to critical nonlinear wave equations. Am. J. Math. 121, 131–175 (1999)

    Article  MATH  Google Scholar 

  6. Bahouri H., Majdoub M., Masmoudi N.: On the lack of compactness in the 2D critical Sobolev embedding. J. Funct. Anal. 260, 208–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Ameur, J.: Description du défaut de compacité de l’injection de Sobolev sur le groupe de Heisenberg. Bulletin de la Société Mathé matique de Belgique 15(4), 599–624 (2008)

  8. Berkolaiko M., Novikov I.: Unconditional bases in spaces of functions of anisotropic smoothness. Proc. Steklov Inst. Math. 204(3), 27–41 (1994)

    MathSciNet  Google Scholar 

  9. Bourdaud G.: La propriété de Fatou dans les espaces de Besov homogènes. Note aux Comptes Rendus Mathematique de l’Académie des Sciences 349, 837–840 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bownik M., Ho K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358(4), 1469–1510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brézis H., Coron J.-M.: Convergence of solutions of H-Systems or how to blow bubbles. Arch. Rational Mech. Anal. 89, 21–86 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cannone M.: A generalization of a theorem by Kato on Navier–Stokes equations. Revista Matemtica Iberoamericana 13(3), 515–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier–Stokes equations in R 3, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire 26(2), 599–624 (2009)

  14. Chemin J.-Y., Gallagher I.: Large, global solutions to the Navier–Stokes equations, slowly varying in one direction. Trans. Am. Math. Soc. 362(6), 2859–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chemin, J.-Y., Gallagher, I., Zhang, P.: Sums of large global solutions to the incompressible Navier–Stokes equations. Journal für die reine und angewandte Mathematik (2013, to appear)

  16. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Diff. Equ. 121(2), 314–328 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chemin J.-Y., Zhang P.: On the global wellposedness to the 3-D incompressible anisotropic Navier–Stokes equations. Commun. Math. Phys. 272(2), 529–566 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical Geophysics: An introduction to rotating fluids and to the Navier–Stokes equations. Oxford University Press, Oxford, 2006

  19. Cohen, A.: Numerical analysis of wavelet methods. Elsevier, Amsterdam, 2003

  20. Daubechies, I.: Ten lectures on wavelets. SIAM, Philadelphia, 1992

  21. DeVore R.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  22. DeVore R., Jawerth B., Popov V.: Compression of wavelet decompositions. Am. J. Math. 114, 737–785 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fieseler, K.-H., Tintarev, K.: Concentration compactness. Functional-analytic grounds and applications, pp. xii+264. Imperial College Press, London, 2007

  24. Fujita H., Kato T.: On the Navier–Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269–315 (1964)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Gallagher I.: Profile decomposition for solutions of the Navier-Stokes equations. Bulletin de la Socit Mathmatique de France 129(2), 285–316 (2001)

    MathSciNet  MATH  Google Scholar 

  26. Gallagher I., Gérard P.: Profile decomposition for the wave equation outside convex obstacles. J. Math. Pures Appl. 80, 1–49 (2001)

    MathSciNet  MATH  Google Scholar 

  27. Gallagher I., Iftimie D., Planchon F.: Asymptotics and stability for global solutions to the Navier–Stokes equations. Annales de l’Institut Fourier 53, 1387–1424 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gallagher, I., Koch, G., Planchon, F.: A profile decomposition approach to the \({L^{\infty}_t(L^{3}_x)}\) Navier–Stokes regularity criterion. Mathematische Annalen (2013, to appear)

  29. Garrigòs, G., Hochmuth, R., Tabacco, A.: Wavelet characterizations for anisotropic Besov spaces with 0 < p < 1. Proc. Edinburgh Math. Soc. (2) 47(3), 573–595 (2004)

  30. Gérard P.: Oscillations and concentration effects in semilinear dispersive wave equations. J. Funct. Anal. 133, 50–68 (1996)

    Google Scholar 

  31. Gérard P.: Description du défaut de compacité de l’injection de Sobolev. ESAIM Contr^ole Optimal et Calcul des Variations, 3, 213–233 (1998)

    Article  MATH  Google Scholar 

  32. Gui, G., Huang, J., Zhang, P.: Large global solutions to the 3-D inhomogeneous Navier–Stokes equations slowly varying in one variable (2013, Preprint)

  33. Gui G., Zhang P.: Stability to the global large solutions of 3-D NavierStokes equations. Adv. Math. 225, 1248–1284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hochmuth R.: Wavelet Characterizations for Anisotropic Besov Spaces. Appl. Comput. Harmonic Anal. 12, 179–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Iftimie D.: Resolution of the Navier–Stokes equations in anisotropic spaces. Revista Matematica Ibero-americana 15(1), 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jaffard S.: Analysis of the lack of compactness in the critical Sobolev embeddings. J. Funct. Anal., 161, 384–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jia, H., Şverák, V.: Minimal L 3-initial data for potential Navier–Stokes singularities, arXiv:1201.1592

  38. Kato, T.: Strong L p-solutions of the Navier–Stokes equation in \({\mathbb{R}^m}\) with applications to weak solutions. Mathematische Zeitschrift 187, 471–480 (1984)

  39. Kenig C.E., Merle F.: Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation. Acta Math. 201, 147–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Keraani S.: On the defect of compactness for the Strichartz estimates of the Schrödinger equation. J. Diff. Equ. 175(2), 353–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Koch, G.: Profile decompositions for critical Lebesgue and Besov space embeddings. Indiana Univ. Math. J. (2013, to appear)

  42. Koch H., Tataru D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157, 22–35 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kyriasis G.: Nonlinear approximation and interpolation spaces. J. Approx. Theory. 113, 110–126 (2001)

    Article  MathSciNet  Google Scholar 

  44. Leisner C.: Nonlinear wavelet approximation in anisotropic Besov spaces. Indiana Univ. Math. J. 52(2), 437–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lemarié-Rieusset, P.-G.: Recent developments in the Navier–Stokes problem. Chapman and Hall/CRC Research Notes in Mathematics, vol. 43, 2002

  46. Leray J.: Essai sur le mouvement d’un liquide visqueux emplissant léspace. Acta Math., 63, 193–248 (1933)

    Article  MathSciNet  Google Scholar 

  47. Leray J.: étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl., 12, 1–82 (1933)

    MathSciNet  MATH  Google Scholar 

  48. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. I., Revista Matematica Iberoamericana 1(1), 145–201 (1985)

    Article  MATH  Google Scholar 

  49. Lions P.-L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Revista Matematica Iberoamericana 1(2), 45–121 (1985)

    Article  MATH  Google Scholar 

  50. Meyer, Y.: Ondelettes et opérateurs. Hermann, Paris, 1990

  51. Paicu M.: équation anisotrope de Navier–Stokes dans des espaces critiques. Revista Matematica Iberoamericana 21(1), 179–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. F. Planchon,: Asymptotic behavior of global solutions to the Navier–Stokes equations in R 3. Revista Matematica Iberoamericana 14(1), 71–93 (1998)

  53. Rusin Şverák V.: Minimal initial data for potential Navier–Stokes singularities. J. Funct. Anal. 260(3), 879–891 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Schindler I., Tintarev K.: An abstract version of the concentration compactness principle. Revista Math Complutense 15(2), 417–436 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Solimini S.: A note on compactness-type properties with respect to Lorentz norms of bounded subset of a Sobolev space.. Annales de l’IHP Analyse non linéaire, 12(3), 319–337 (1995)

    MathSciNet  MATH  Google Scholar 

  56. Struwe M.: A global compactness result for boundary value problems involving limiting nonlinearities. Mathematische Zeitschrift 187, 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  57. Tao, T.: An inverse theorem for the bilinear L 2 Strichartz estimate for the wave equation. arXiv: 0904-2880, 2009

  58. Temlyakov V.N.: Universal bases and greedy algorithms for anisotropic function classes. Constructive Approximation 18, 529–550 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Gallagher.

Additional information

Communicated by V. Šverák

Isabelle Gallagher was partially supported by the A.N.R grant ANR-08-BLAN-0301-01 “Mathocéan”, and the Institut Universitaire de France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahouri, H., Gallagher, I. On the Stability in Weak Topology of the Set of Global Solutions to the Navier–Stokes Equations. Arch Rational Mech Anal 209, 569–629 (2013). https://doi.org/10.1007/s00205-013-0623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0623-y

Keywords

Navigation