Skip to main content
Log in

The Basin of Attraction of the Steady-States for a Chemotaxis Model in \({\mathbb{R}^2}\) with Critical Mass

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for a parabolic–elliptic system in \({\mathbb{R}^2}\), which is amathematical model of chemotaxis and also amodel of self-attracting particles. In the critical mass case, we determine the basin of attraction of the steady-states for the Cauchy problem through a Lyapunov functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Bandle C.: Isoperimetric Inequalities and Applications. Pitman, London (1980)

    MATH  Google Scholar 

  2. Ben-Artzi M.: Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Ration. Mech. Anal. 128, 329–358 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler P.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. III. Colloq. Math. 68, 229–239 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Biler P., Cannone M., Guerra I.A., Karch G.: Global regular and singular solutions for a model of gravitational particles. Math. Ann. 330, 693–708 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler P., Hilhorst D., Nadzieja T.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. II. Colloq. Math. 67, 297–308 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Biler P., Karch G., Laurençot P., Nadzieja T.: The 8π−problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Meth. Appl. Sci. 29, 1563–1583 (2006)

    Article  MATH  Google Scholar 

  7. Biler P., Nadzieja T.: Existence and nonexistence of solutions for a model of gravitational interactions of particles. I. Colloq. Math. 66, 319–334 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Blanchet, A., Carlen, E., Carrillo, J. A.: Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. arXiv:1009.0134

  9. Blanchet A., Carrillo J.A., Masmoudi N.: Infinite time aggregation for the critical Paltak–Keller–Segel model in \({\mathbb{R}^2}\). Commun. Pure Appl. Math. 61, 1449–1481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blanchet A., Dolbeault J., Perthame B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006, 1–33 (2006)

    MathSciNet  Google Scholar 

  11. Brézis H.: Remarks on the preceding paper by M. Ben-Artzi: Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Ration. Mech. Anal. 128, 359– (1994)

    Article  MATH  Google Scholar 

  12. Childress S., Percus J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Del Pino M., Dolbeault J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusion. J. Math. Pures Appl. 81, 847–875 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Díaz J.I., Nagai T.: Symmetrization in a parabolic–elliptic system related to chemotaxis. Adv. Math. Sci. Appl. 5, 659– (1995)

    MathSciNet  MATH  Google Scholar 

  15. Díaz J.I., Nagai T., Rakotoson J.M.: Symmetrization techniques on unbounded domains: application to a chemotaxis system in \({\mathbb{R}^N}\). J. Differ. Equ. 145, 156–183 (1998)

    Article  MATH  Google Scholar 

  16. Gallagher I., Gallay T., Lions P.-L.: On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. Math. Nachr. 278, 1665–1672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Giga Y., Miyakawa T., Osada H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Ration. Mech. Anal. 96, 223–250 (1988)

    Article  MathSciNet  Google Scholar 

  18. Herrero M.A., Velázquez J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306, 583–623 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modeling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    MATH  Google Scholar 

  21. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 399–415 (1998)

    Article  MathSciNet  Google Scholar 

  22. Kato T.: The Navier–Stokes equation for an incompressible fluid in \({\mathbb{R}^2}\) with a measure as the initial vorticity. Differ. Integral Equ. 7, 949–966 (1994)

    MATH  Google Scholar 

  23. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  Google Scholar 

  24. Kurokiba M., Ogawa T.: Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type. Differ. Integral Equ. 16, 427–452 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, Vol. 14. Ameri. Math. Soc. Providence, RI, 2001

  26. Luckhaus S., Sugiyama Y.: Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases. Indiana Univ. Math. J. 56, 1279–1297 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mizoguchi N., Senba T.: Type II blowup solutions to a simplified chemotaxis system. Adv. Differ. Equ. 17, 505–545 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Mossino J.: Inégalités Isopérimétriques et Applications en Physique. Hermann, Paris (1984)

    MATH  Google Scholar 

  29. Nagai T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Nagai T.: Global existence and decay estimates of solutions to a parabolic–elliptic system of drift-diffusion type in \({\mathbb{R}^2}\). Differ. Integral Equ. 24, 29–68 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Nagai T.: Convergence to self-similar solutions for a parabolic–elliptic system of drift-diffusion type in \({\mathbb{R}^2}\). Adv. Differ. Equ. 16, 839–866 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Naito, Y., Senba, T.: Bounded and unbounded oscillating solutions to a parabolic–elliptic system in two dimensional solutions. preprint

  33. Naito, Y., Suzuki, T.: Self-similar solutions to a nonlinear parabolic–elliptic system. Proceedings of Third East Asia Partial Differential Equation Conference, Vol. 8, 43–55. Taiwanese J. Math., 2004

  34. Rakotoson J.M.: Réarrangement Relatif: un instrument d’estimation dans les problèmes aux limites. Springer-Verlag, Berlin (2008)

    Google Scholar 

  35. Senba T.: Grow-up rate of a radial solution for a parabolic–elliptic system in \({\mathbb{R}^2}\). Adv. Differ. Equ. 14, 1155–1192 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Senba T., Suzuki T.: Chemotactic collapse in a parabolic–elliptic system of mathematical biology. Adv. Differ. Equ. 6, 21–50 (2001)

    MathSciNet  MATH  Google Scholar 

  37. Simon J.: Compact sets in the space L p(0, T; B). Ann. Math. Pura Appl. 146, 65–96 (1987)

    MATH  Google Scholar 

  38. Sugiyama Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19, 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Suzuki, T.: Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, Vol. 62. Birkhäuser Boston Inc., Boston, MA, 2005

  40. Wolansky G.: Comparison between two models of self-gravitating clusters: conditions for gravitational collapse. Nonlinear Anal. 24, 1119–1129 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yamada T.: Moment estimates and higher-order asymptotic expansions of solutions to a parabolic system of chemotaixs in the whole space. Funkcilaj Ekvacioj. 54, 15–51 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julián López-Gómez.

Additional information

Communicated by P. H. Rabinowitz

The research of J. López-Gómez and T. Nagai has been supported by the Spanish Ministry of Science and Technology under Grants MTM2009-08259 and MTM2012-30669.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Gómez, J., Nagai, T. & Yamada, T. The Basin of Attraction of the Steady-States for a Chemotaxis Model in \({\mathbb{R}^2}\) with Critical Mass. Arch Rational Mech Anal 207, 159–184 (2013). https://doi.org/10.1007/s00205-012-0560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0560-1

Keywords