Abstract
We consider the Cauchy problem for a parabolic–elliptic system in \({\mathbb{R}^2}\), which is amathematical model of chemotaxis and also amodel of self-attracting particles. In the critical mass case, we determine the basin of attraction of the steady-states for the Cauchy problem through a Lyapunov functional.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bandle C.: Isoperimetric Inequalities and Applications. Pitman, London (1980)
Ben-Artzi M.: Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Ration. Mech. Anal. 128, 329–358 (1994)
Biler P.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. III. Colloq. Math. 68, 229–239 (1995)
Biler P., Cannone M., Guerra I.A., Karch G.: Global regular and singular solutions for a model of gravitational particles. Math. Ann. 330, 693–708 (2004)
Biler P., Hilhorst D., Nadzieja T.: Existence and nonexistence of solutions for a model of gravitational interaction of particles. II. Colloq. Math. 67, 297–308 (1994)
Biler P., Karch G., Laurençot P., Nadzieja T.: The 8π−problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Meth. Appl. Sci. 29, 1563–1583 (2006)
Biler P., Nadzieja T.: Existence and nonexistence of solutions for a model of gravitational interactions of particles. I. Colloq. Math. 66, 319–334 (1994)
Blanchet, A., Carlen, E., Carrillo, J. A.: Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model. arXiv:1009.0134
Blanchet A., Carrillo J.A., Masmoudi N.: Infinite time aggregation for the critical Paltak–Keller–Segel model in \({\mathbb{R}^2}\). Commun. Pure Appl. Math. 61, 1449–1481 (2008)
Blanchet A., Dolbeault J., Perthame B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 2006, 1–33 (2006)
Brézis H.: Remarks on the preceding paper by M. Ben-Artzi: Global solutions of two-dimensional Navier-Stokes and Euler equations. Arch. Ration. Mech. Anal. 128, 359– (1994)
Childress S., Percus J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)
Del Pino M., Dolbeault J.: Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusion. J. Math. Pures Appl. 81, 847–875 (2002)
Díaz J.I., Nagai T.: Symmetrization in a parabolic–elliptic system related to chemotaxis. Adv. Math. Sci. Appl. 5, 659– (1995)
Díaz J.I., Nagai T., Rakotoson J.M.: Symmetrization techniques on unbounded domains: application to a chemotaxis system in \({\mathbb{R}^N}\). J. Differ. Equ. 145, 156–183 (1998)
Gallagher I., Gallay T., Lions P.-L.: On the uniqueness of the solution of the two-dimensional Navier-Stokes equation with a Dirac mass as initial vorticity. Math. Nachr. 278, 1665–1672 (2005)
Giga Y., Miyakawa T., Osada H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Ration. Mech. Anal. 96, 223–250 (1988)
Herrero M.A., Velázquez J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306, 583–623 (1996)
Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch. Math.-Verein. 105, 103–165 (2003)
Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modeling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)
Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29, 399–415 (1998)
Kato T.: The Navier–Stokes equation for an incompressible fluid in \({\mathbb{R}^2}\) with a measure as the initial vorticity. Differ. Integral Equ. 7, 949–966 (1994)
Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)
Kurokiba M., Ogawa T.: Finite time blow-up of the solution for a nonlinear parabolic equation of drift-diffusion type. Differ. Integral Equ. 16, 427–452 (2003)
Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, Vol. 14. Ameri. Math. Soc. Providence, RI, 2001
Luckhaus S., Sugiyama Y.: Asymptotic profile with the optimal convergence rate for a parabolic equation of chemotaxis in super-critical cases. Indiana Univ. Math. J. 56, 1279–1297 (2007)
Mizoguchi N., Senba T.: Type II blowup solutions to a simplified chemotaxis system. Adv. Differ. Equ. 17, 505–545 (2007)
Mossino J.: Inégalités Isopérimétriques et Applications en Physique. Hermann, Paris (1984)
Nagai T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)
Nagai T.: Global existence and decay estimates of solutions to a parabolic–elliptic system of drift-diffusion type in \({\mathbb{R}^2}\). Differ. Integral Equ. 24, 29–68 (2011)
Nagai T.: Convergence to self-similar solutions for a parabolic–elliptic system of drift-diffusion type in \({\mathbb{R}^2}\). Adv. Differ. Equ. 16, 839–866 (2011)
Naito, Y., Senba, T.: Bounded and unbounded oscillating solutions to a parabolic–elliptic system in two dimensional solutions. preprint
Naito, Y., Suzuki, T.: Self-similar solutions to a nonlinear parabolic–elliptic system. Proceedings of Third East Asia Partial Differential Equation Conference, Vol. 8, 43–55. Taiwanese J. Math., 2004
Rakotoson J.M.: Réarrangement Relatif: un instrument d’estimation dans les problèmes aux limites. Springer-Verlag, Berlin (2008)
Senba T.: Grow-up rate of a radial solution for a parabolic–elliptic system in \({\mathbb{R}^2}\). Adv. Differ. Equ. 14, 1155–1192 (2009)
Senba T., Suzuki T.: Chemotactic collapse in a parabolic–elliptic system of mathematical biology. Adv. Differ. Equ. 6, 21–50 (2001)
Simon J.: Compact sets in the space L p(0, T; B). Ann. Math. Pura Appl. 146, 65–96 (1987)
Sugiyama Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems. Differ. Integral Equ. 19, 841–876 (2006)
Suzuki, T.: Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, Vol. 62. Birkhäuser Boston Inc., Boston, MA, 2005
Wolansky G.: Comparison between two models of self-gravitating clusters: conditions for gravitational collapse. Nonlinear Anal. 24, 1119–1129 (1995)
Yamada T.: Moment estimates and higher-order asymptotic expansions of solutions to a parabolic system of chemotaixs in the whole space. Funkcilaj Ekvacioj. 54, 15–51 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by P. H. Rabinowitz
The research of J. López-Gómez and T. Nagai has been supported by the Spanish Ministry of Science and Technology under Grants MTM2009-08259 and MTM2012-30669.
Rights and permissions
About this article
Cite this article
López-Gómez, J., Nagai, T. & Yamada, T. The Basin of Attraction of the Steady-States for a Chemotaxis Model in \({\mathbb{R}^2}\) with Critical Mass. Arch Rational Mech Anal 207, 159–184 (2013). https://doi.org/10.1007/s00205-012-0560-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00205-012-0560-1