Skip to main content
Log in

Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≧ 2. We address the question of the global existence of strong solutions for initial data close to a constant state having critical Besov regularity. First, this article shows the recent results of Charve and Danchin (Arch Ration Mech Anal 198(1):233–271, 2010) and Chen et al. (Commun Pure Appl Math 63:1173–1224, 2010) with a new proof. Our result relies on a new a priori estimate for the velocity that we derive via the intermediary of the effective velocity, which allows us to cancel out the coupling between the density and the velocity as in Haspot (Well-posedness in critical spaces for barotropic viscous fluids, 2009). Second, we improve the results of Charve and Danchin (2010) and Chen et al. (2010) by adding as in Charve and Danchin (2010) some regularity on the initial data in low frequencies. In this case we obtain global strong solutions for a class of large initial data which rely on the results of Hoff (Arch Rational Mech Anal 139:303–354, 1997), Hoff (Commun Pure Appl Math 55(11):1365–1407, 2002), and Hoff (J Math Fluid Mech 7(3):315–338, 2005) and those of Charve and Danchin (2010) and Chen et al. (2010). We conclude by generalizing these results for general viscosity coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H., Paicu M.: Équation de Navier–Stokes avec densité et viscosité variables dans l’espace critique.. Annales de l’institut Fourier 57(3), 883–917 (2007)

    Article  Google Scholar 

  2. Bahouri H., Chemin J.-Y.: Équations d’ondes quasilinéaires et estimation de Strichartz. Am. J. Math. 121, 1337–1377 (1999)

    Article  MATH  Google Scholar 

  3. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

  4. Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales Scientifiques de l’école Normale Supérieure. 14, 209–246 (1981)

    Article  MATH  Google Scholar 

  5. Bresch D., Desjardins B.: Existence of global weak solutions for a 2D Viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1–2), 211–223 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bresch D., Desjardins B.: Sur un modèle de Saint-Venant visqueux et sa limite quasi-géostrophique. C. R. Math. Acad. Sci. Paris 335(12), 1079–1084 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Charve F., Danchin R.: A global existence result for the compressible Navier–Stokes equations in the critical Lp framework. Arch. Ration. Mech. Anal. 198(1), 233–271 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin J.-Y.: Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel. J. Anal. Math. 77, 27–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chemin, J.-Y.: About Navier–Stokes system. Prépublication du Laboratoire d’Analyse Numérique de Paris 6, R96023 (1996)

  10. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes. J. Differ. Equ. 121, 314–328 (1992)

    Article  ADS  MATH  Google Scholar 

  11. Chen Q., Miao C., Zhang Z.: Global well-posedness for the compressible Navier–Stokes equations with the highly oscillating initial velocity. Commun. Pure Appl. Math. 63, 1173–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danchin, R.: Fourier analysis methods for PDE’s (Preprint 2005)

  13. Danchin R.: Local Theory in critical Spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26(78), 1183–1233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Danchin R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Danchin R.: Global existence in critical spaces for compressible viscous and heat-conductive gases. Archiv. Ration. Mech. Anal. 160, 1–39 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Danchin R.: On the uniqueness in critical spaces for compressible Navier–Stokes equations. Nonlinear Differ. Equ. Appl. 12(1), 111–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Danchin R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Commun. Partial Differ. Equ. 32(9), 1373–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haspot B.: Cauchy problem for Navier–Stokes system with a specific term of capillarity. M3AS 20(7), 1–39 (2010)

    MathSciNet  Google Scholar 

  19. Haspot, B.: Cauchy problem for viscous shallow water equations with a term of capillarity. Hyperbolic problems: theory, numerics and applications, pp. 625–634. In: Proceedings of Symposia in Applied Mathematics, vol. 67, Part 2. American Mathematical Society, Providence, 2009

  20. Haspot, B.: Local well-posedness for density-dependent incompressible fluids with non-Lipschitz velocity. Annales de l’Institut Fourier (to appear)

  21. Haspot, B.: Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces. J. Differ. Equ. (to appear)

  22. Haspot, B.: Regularity of weak solution for compressible barotropic Navier–Stokes equations. Arxiv (January 2010) and preprint

  23. Hoff D.: Global existence for 1D, compressible, isentropic Navier–Stokes equations with large initial data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)

    MATH  Google Scholar 

  24. Hoff, D.: Uniqueness of weak solutions of the Navier–Stokes equations of multidimensional, compressible flow. SIAM J. Math. Anal. 37(6), (2006)

  25. Hoff D.: Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of the heat conducting fluids. Arch. Ration. Mech. Anal. 139, 303–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hoff D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120(1), 215–254 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hoff D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal. 132(1), 1–14 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hoff D.: Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions. Commun. Pure Appl. Math. 55(11), 1365–1407 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hoff D.: Compressible flow in a half-space with Navier-boundary conditions. J. Math. Fluid Mech. 7(3), 315–338 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hoff D., Santos M.: Lagrangean structure and propagation of singularities in multidimensional compressible flow. Arch. Ration. Mech. Anal. 188(3), 509–543 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hoff D., Zumbrun K.: Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow. Indian. Univ. Math. J. 44, 603–676 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kazhikov A.V.: The equation of potential flows of a compressible viscous fluid for small Reynolds numbers: existence, uniqueness and stabilization of solutions. Sibirsk. Mat. Zh. 34(3), 70–80 (1993)

    MathSciNet  Google Scholar 

  33. Kazhikov A.V., Shelukhin V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. Prikl. Mat. Meh. 41(2), 282–291 (1977)

    MathSciNet  Google Scholar 

  34. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, Compressible models, vol. 2. Oxford University Press, Oxford, 1998

  35. Matsumura A., Nishida T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive gases. J. Math. Kyoto Univ. 20(1), 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Matsumura A., Nishida T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci. 55(9), 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Meyer, Y.: Wavelets, paraproducts, and Navier–Stokes equation. In: Current Developments in Mathematics 1996 (Cambridge, MA), pp. 105–212. Int. Press, Boston, 1997

  38. Nash J.: Le problème de Cauchy pour les équations différentielles d’un fluide général. Bull. Soc. Math. France 90, 487–497 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  39. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. de Gruyter Series in Nonlinear Analysis and Applications, 3. Walter de Gruyter and Co., Berlin 1996

  40. Serre D.: Solutions faibles globales des équations de Navier–Stokes pour un fluide compressible. Comptes rendus de l’Académie des sciences Série 1 303(13), 639–642 (1986)

    MATH  Google Scholar 

  41. Solonnikov V.A.: Estimates for solutions of nonstationary Navier–Stokes systems. Zap. Nauchn. Sem. LOMI 38, 153–231 (1973)

    MathSciNet  MATH  Google Scholar 

  42. Solonnikov V.A.: Estimates for solutions of nonstationary Navier–Stokes systems. J. Soviet Math. 8, 467–529 (1977)

    Article  MATH  Google Scholar 

  43. Valli V., Zajaczkowski W.: Navier–Stokes equations for compressible fluids: global existence and qualitative properties of the solutions in the general case. Commun. Math. Phys. 103(2), 259–296 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Haspot.

Additional information

Communicated by C. Le Bris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haspot, B. Existence of Global Strong Solutions in Critical Spaces for Barotropic Viscous Fluids. Arch Rational Mech Anal 202, 427–460 (2011). https://doi.org/10.1007/s00205-011-0430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-011-0430-2

Keywords

Navigation