Skip to main content
Log in

On the Schrödinger–Poisson–Slater System: Behavior of Minimizers, Radial and Nonradial Cases

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper is motivated by the study of a version of the so-called Schrödinger–Poisson–Slater problem:

$$- \Delta u + \omega u + \lambda \left( u^2 \star \frac{1}{|x|} \right) u=|u|^{p-2}u,$$

where \({u \in H^{1}(\mathbb {R}^3)}\). We are concerned mostly with \({p \in (2,3)}\). The behavior of radial minimizers motivates the study of the static case ω = 0. Among other things, we obtain a general lower bound for the Coulomb energy, which could be useful in other frameworks. The radial and nonradial cases turn out to yield essentially different situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti, A., Ruiz, D: Multiple bound states for the Schrödinger-Poisson problem. Comm. Contemp. Math. (to appear)

  3. Benci V., Fortunato D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Bokanowski O., Mauser N.J.: Local approximation of the Hartree-Fock exchange potential: a deformation approach. Math. Model Methods Appl. Sci. 9, 941–961 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bokanowski O., López J.L., Soler J.: On an exchange interaction model for the quantum transport; the Schrödinger-Poisson-Slater term. Math. Model Methods Appl. Sci. 13, 1397–1412 (2003)

    Article  MATH  Google Scholar 

  6. Brezis, H.: Analyse fonctionelle, Théorie et applications, Masson Ed., Paris, 1983

  7. Beresticky H., Lions P.L.: Nonlinear scalar field equations I: Existence of a ground state. Arch. Rational Mech. Anal. 82, 313–345 (1983)

    MathSciNet  ADS  Google Scholar 

  8. Catto I., Le Bris C., Lions P.L.: On some periodic Hartree-type models for crystals. Ann. Inst. H. Poincaré Anal. Non Linéaire 19, 143–190 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Catto I., Le Bris C., Lions P.L.: On the thermodynamic limit for Hartree-Fock type models. Ann. Inst. H. Poincaré Anal. Non Linéaire 18, 687–760 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Cazenave T., Lions P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85, 549–561 (1982)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. 134, 893–906 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. D’Aprile T., Mugnai D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    MATH  MathSciNet  Google Scholar 

  13. D’Aprile T., Wei J.: On bound states concentrating on spheres for the Maxwell-Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. D’Aprile T., Wei J.: Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem. Calc. Var. 25, 105–137 (2005)

    Article  MathSciNet  Google Scholar 

  15. Gidas B., Ni W.-M., Nirenberg L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry I and II. J. Funct. Anal. 74, 160–197 (1987); 94, 308–348 (1990)

    Google Scholar 

  17. Ianni, I., Vaira, G.: Semiclassical states for the Schrödinger-Poisson problem with an external potential and a density charge: concentration around a sphere. Preprint

  18. Ianni, I., Ruiz, D.: Ground and bound states for a static Schrödinger-Poisson-Slater problem. Preprint

  19. Kikuchi H.: On the existence of a solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal. 67(5), 1445–1456 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kikuchi, H.: Existence and orbital stability of standing waves for nonlinear Schrödinger equations via the variational method. Doctoral thesis

  21. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. AMS, 1997

  22. Lions P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1984)

    Article  ADS  Google Scholar 

  23. Mauser N.J.: The Schrödinger-Poisson-Xα equation. Appl. Math. Lett. 14, 759–763 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pisani L., Siciliano G.: Neumann condition in the Schrödinger-Maxwell system. Topol. Methods Nonlinear Anal. 29, 251–264 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Ruiz D.: Semiclassical states for coupled Schrodinger-Maxwell equations: concentration around a sphere. Math. Model Methods Appl. Sci. 15, 141–164 (2005)

    Article  MATH  Google Scholar 

  26. Ruiz D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sánchez O., Soler J.: Long-time dynamics of the Schrödinger-Poisson-Slater system. J. Stat. Phys. 114, 179–204 (2004)

    Article  MATH  ADS  Google Scholar 

  28. Slater J.C.: A simplification of the Hartree-Fock method. Phys. Rev. 81, 385–390 (1951)

    Article  MATH  ADS  Google Scholar 

  29. Smets D., Su J., Willem M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Su J., Wang Z.-Q., Willem M.: Nonlinear Schrödinger equations with unbounded and decaying radial potentials. Commun. Contemp. Math. 9, 571–583 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Su J., Wang Z.-Q., Willem M.: Weighted Sobolev embedding with unbounded and decaying radial potentials. J. Differ. Equ. 238, 201–219 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Wang Z., Zhou H.-S.: Positive solution for a nonlinear stationary Schrödinger-Poisson system in \({\mathbb {R}^3}\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ruiz.

Additional information

Communicated by P.-L. Lions

The author has been supported by the Spanish Ministry of Science and Technology under Grant MTM2005-01331 and by J. Andalucía (FQM 116).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz, D. On the Schrödinger–Poisson–Slater System: Behavior of Minimizers, Radial and Nonradial Cases. Arch Rational Mech Anal 198, 349–368 (2010). https://doi.org/10.1007/s00205-010-0299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-010-0299-5

Keywords

Navigation