Skip to main content
Log in

Sobolev Periodic Solutions of Nonlinear Wave Equations in Higher Spatial Dimensions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove the existence of Cantor families of periodic solutions for nonlinear wave equations in higher spatial dimensions with periodic boundary conditions. We study both forced and autonomous PDEs. In the latter case our theorems generalize previous results of Bourgain to more general nonlinearities of class Ck and assuming weaker non-resonance conditions. Our solutions have Sobolev regularity both in time and space. The proofs are based on a differentiable Nash–Moser iteration scheme, where it is sufficient to get estimates of interpolation-type for the inverse linearized operators. Our approach works also in presence of very large “clusters of small divisors”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P.: Periodic solutions of forced Kirkhoff equation. Ann. Scuola Norm. Sup. Pisa (to appear)

  2. Baldi P., Berti M.: Forced vibrations of a nonhomogeneous string. SIAM J. Math. Anal. 40, 382–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti M., Bolle P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134, 359–419 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berti M., Bolle P.: Cantor families of periodic solutions of wave equations with Ck nonlinearities. NoDEA Nonlinear Differential Equations Appl. 15, 247–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis H., Coron J.-M., Nirenberg L.: Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Comm. Pure Appl. Math. 33, 667–684 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5, 629–639 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton, 2005

  9. Chierchia L., You J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm. Math. Phys. 211, 497–525 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. Panoramas et Synthèses, vol. 9. Société Mathématique de France, Paris, 2000

  11. Craig W., Wayne C.E.: method and periodic solutions of nonlinear wave equation. Comm. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eliasson, L. H., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. (to appear)

  13. Fokam, J.M.: Forced vibrations via Nash–Moser iteration. PhD thesis at Austin University

  14. Fröhlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Comm. Math. Phys. 88, 151–184 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gentile, G., Procesi, M.: Periodic solutions for the Schrödinger equation with nonlocal smoothing nonlinearities in higher dimension. J. PDEs (to appear)

  16. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional Anal. i Prilozhen. 21, 22–37, 95 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuksin, S.: Analysis of Hamiltonian PDEs. Oxford Lecture series in Mathematics and its applications, vol. 19. Oxford University Press, Oxford, 2000

  18. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 143, 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lojasiewicz S., Zehnder E.: An inverse function theorem in Fréchet-spaces. J. Funct. Anal. 33, 165–174 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations I & II. Ann. Scuola Norm. Sup. Pisa (3) 20, 265–315, 499–535 (1966)

  21. Plotnikov P.I., Yungerman L.N.: Periodic solutions of a weakly nonlinear wave equation with an irrational relation of period to interval length. Differ. Equ. 24, 1059–1065 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Pöschel, J.: A KAM-Theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci.(4) 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Rabinowitz P.: Free vibrations for a semi-linear wave equation. Comm. Pure Appl. Math. 31, 31–68 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Su, H.W.: Persistence of periodic solutions for the nonlinear wave equation: a case of finite regularity. PhD Thesis, Brown University, 1998

  25. Taylor M.: Partial Differential Equations, vol.III. Springer, New York (1997)

    Google Scholar 

  26. Wayne E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys. 127, 479–528 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Berti.

Additional information

Communicated by P. Rabinowitz

Supported by MIUR “Variational Methods and Nonlinear Differential Equations” and by the European Research Council under FP7.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berti, M., Bolle, P. Sobolev Periodic Solutions of Nonlinear Wave Equations in Higher Spatial Dimensions. Arch Rational Mech Anal 195, 609–642 (2010). https://doi.org/10.1007/s00205-008-0211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0211-8

Keywords

Navigation