Skip to main content
Log in

Optimal Internal Stabilization of the Linear System of Elasticity

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We address the non-linear optimal design problem which consists in finding the best position and shape of a feedback damping mechanism for the stabilization of the linear system of elasticity. Non-existence of classical designs are related to the over-damping phenomenon. Therefore, by means of Young measures, a relaxation of the original problem is proposed. Due to the vector character of the elasticity system, the relaxation is carried out through div-curl Young measures which let the analysis be direct and the dimension independent. Finally, the relaxed problem is solved numerically, and a penalization technique to recover quasi-optimal classical designs from the relaxed ones is implemented in several numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau F., Komornik V.: Boundary observability, controllability, and stabilization of linear elasto-dynamic systems. SIAM J. Control Optim. 37(2), 521–542 (1998)

    Article  MathSciNet  Google Scholar 

  2. Allaire G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, vol. 146. Springer, Berlin (2002)

    Google Scholar 

  3. Ball, J.M.: A version of the fundamental theorem for Young measures. PDEs and Continuum Models of Phase Transitions. (Eds. Rascle, M., Serre, D., Slemrod, M.,) Lecture Notes in Physics, vol. 344. Springer, pp. 207–215, 1989

  4. Castro C., Cox S.J.: Achieving arbitrarily large decay in the damped wave equation. SIAM J. Control Optim. 39(6), 1748–1755 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cioranescu D., Donato P.: An Introduction to Homogenization. Oxford University Press, NY (1999)

    MATH  Google Scholar 

  6. Cohen G.C.: Higher order numerical method for transient wave equation, Scientific computation. Springer, Berlin (2002)

    Google Scholar 

  7. Cox S.J.: Designing for optimal energy absorption II, The damped wave equation. Int. Ser. Numer. Math. 126, 103–109 (1998)

    Google Scholar 

  8. Duvaut G., Lions J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    MATH  Google Scholar 

  9. Fahroo F., Ito K.: Variational formulation of optimal damping designs. Contemp. Math. 209, 95–114 (1997)

    MathSciNet  Google Scholar 

  10. Fonseca I., Müller S.: A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hebrard P., Henrot A.: Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48, 199–209 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kinderlehrer D., Pedregal P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115, 329–365 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lions, J.-L.: Contrôlabilité exacte, Pertubations et stabilisation de systèmes distribués. Tome 2, Masson, 1988

  14. Lions J.-L., Magenes E.: Non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer, Berlin (1972)

    MATH  Google Scholar 

  15. Maestre F., Münch A., Pedregal P.: A spatio-temporal design problem for a damped wave equation. SIAM J. Appl. Math. 68(1), 109–132 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Münch A., Pazoto A.: Uniform stabilization of a numerical approximation of the locally damped wave equation. Esaim COCV 13(2), 265–293 (2007)

    Article  MATH  Google Scholar 

  17. Münch A., Pedregal P., Periago F.: A variational approach to a shape design problem for the wave equation. C. R. Acad. Sci. Paris Ser. I 343, 371–376 (2006)

    MATH  Google Scholar 

  18. Münch A., Pedregal P., Periago F.: Optimal design of the damping set for the stabilization of the wave equation. J. Diff. Eqs. 231, 331–358 (2006)

    Article  MATH  Google Scholar 

  19. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, 1997

  20. Pedregal P.: Div-Curl Young measures and optimal design in any dimension. Rev. Univ. Complutense 20(1), 239–255 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Pedregal.

Additional information

Communicated by S. S. Antman

A. Münch was partially supported by grants ANR-05-JC-0182-01 and ANR-07- JC-183284.

P. Pedregal was supported by project MTM2004-07114 from Ministerio de Educación y Ciencia (Spain), and PAI05-029 from JCCM (Castilla-La Mancha).

F. Periago was supported by projects MTM2004-07114 from Ministerio de Educación y Ciencia (Spain) and 00675/PI/04 from Fundación Séneca (Gobierno Regional de Murcia, Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münch, A., Pedregal, P. & Periago, F. Optimal Internal Stabilization of the Linear System of Elasticity. Arch Rational Mech Anal 193, 171–193 (2009). https://doi.org/10.1007/s00205-008-0187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-008-0187-4

Keywords

Navigation