Abstract
In Brazil, around 80% of snakebites are caused by snakes of the genus Bothrops. A three-dimensional culture model was standardized and used to perform treatments with Bothrops erythromelas venom (BeV) and its antivenom (AV). The MRC-5 and L929 cell lines were cultured at increasing cell densities. Morphometric parameters were evaluated through images obtained from an inverted microscope: solidity, circularity, and Feret diameter. L929 microtissues (MT) showed better morphometric data, and thus they were used for further analysis. MT viability was assessed using the acridine orange and ethidium bromide staining method, which showed viable cells in the MT on days 5, 7, and 10 of cultivation. Histochemical and histological analyses were performed, including hematoxylin/eosin staining, which showed a good structure of the spheroids. Alcian blue staining revealed the presence of acid proteoglycans. Immunohistochemical analysis with ki-67 showed different patterns of cell proliferation. The MT were also subjected to pharmacological tests using the BeV, in the presence or absence of its AV. The results showed that the venom was not cytotoxic, but it caused morphological changes. The MT showed cell detachment, losing their structure. The antivenom was able to partially prevent the venom activities.





Similar content being viewed by others
Data availability
Raw data available on request.
References
Achilli TM, Meyer J, Morgan JR (2012) Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther 12(10):1347–1360. https://doi.org/10.1517/14712598.2012.707181
Albuquerque PLMM, Paiva JHHGL, Martins AMC, Meneses GC, da Silva Júnior GB, Buckley N, Daher EDF (2020) Clinical assessment and pathophysiology of Bothrops venom-related acute kidney injury: a scoping review. J Venom Anim Toxins Incl Trop Dis 26:e20190076. https://doi.org/10.1590/1678-9199-JVATITD-2019-0076
American Type Culture Collection, American Type Culture Collection website, accessed 16 May 2024. https://www.atcc.org/products/ccl-171.
Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11(5):2200–2211. https://doi.org/10.3390/ijms11052200
Bernardes-Oliveira E, Gomes DL et al (2016) Bothrops jararaca and Bothrops erythromelas Snake Venoms Promote Cell Cycle Arrest and Induce Apoptosis via the Mitochondrial Depolarization of Cervical Cancer Cells. Evid Based Complement Alternat Med 2016:1574971. https://doi.org/10.1155/2016/1574971
Berneel E, Philips C, Declercq H, Cornelissen R (2016) Redifferentiation of high-throughput generated fibrochondrocyte micro-aggregates: impact of low oxygen tension. Cells Tissues Organs 202(5–6):369–381. https://doi.org/10.1159/000447509
Carriel V, Garzón I (2009) Aplicación del método de bloque celular para evaluar la población de fibroblastos de mucosa oral en ingeniería tisular. Actual Med 94:007–011
Carvalho JCT, Keita H, Santana GR et al (2018) Effects of Bothrops alternatus venom in zebrafish: a histopathological study. Inflammopharmacology 26(1):273–284. https://doi.org/10.1007/s10787-017-0362-z
Cavalcante JDS, Nogueira Júnior FA, Bezerra Jorge RJ, Almeida C (2021) Pain modulated by Bothrops snake venoms: Mechanisms of nociceptive signaling and therapeutic perspectives. Toxicon 201:105–114. https://doi.org/10.1016/j.toxicon.2021.08.016
Chato-Astrain J, Chato-Astrain I, Sánchez-Porras D, García-García ÓD, Bermejo-Casares F, Vairo C, Villar-Vidal M, Gainza G, Villullas S, Oruezabal RI, Ponce-Polo Á, Garzón I, Carriel V, Campos F, Alaminos M (2020) Generation of a novel human dermal substitute functionalized with antibiotic-loaded nanostructured lipid carriers (NLCs) with antimicrobial properties for tissue engineering. J Nanobiotechnol 18(1):174. https://doi.org/10.1186/s12951-020-00732-0
Chen, D., Smith, L., Khandekar, G., Patel, P., Yu, C., Zhang, K., Chen, C., Han, L., & Wells, R. (2020). Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Sci Rep, 10. https://doi.org/10.1038/s41598-020-76107-0.
da Silva WRGB, de Siqueira Santos L, Lira D, de Oliveira Luna KP, Fook SML, Alves RRN (2023) Who are the most affected by Bothrops snakebite envenoming in Brazil? A Clinical-epidemiological profile study among the regions of the country. PLoS Negl Trop Dis 17(10):e0011708. https://doi.org/10.1371/journal.pntd.0011708
de Ávila RI, Valadares MC (2019) Brazil moves toward the replacement of animal experimentation. Alternatives to Laboratory Animals : ATLA 47(2):71–81. https://doi.org/10.1177/0261192919856806
de Sousa FC, Jorge AR, de Menezes, et al (2016) Bothrops erythromelas () venom induces apoptosis on renal tubular epithelial cells. Toxicon 118:82–85. https://doi.org/10.1016/j.toxicon.2016.04.040
Durand-Herrera D, Campos F, Jaimes-Parra BD, Sánchez-López JD, Fernández-Valadés R, Alaminos M, Campos A, Carriel V (2018) Wharton’s jelly-derived mesenchymal cells as a new source for the generation of microtissues for tissue engineering applications. Histochem Cell Biol 150(4):379–393. https://doi.org/10.1007/s00418-018-1685-6
Fusco, L., Velde, A., Leiva, L., & Bustillo, S. (2021). Evaluation of in vitro muscle regeneration after myonecrosis induced by Bothrops alternatus and Bothrops diporus venoms from Northeastern Argentina. Proceedings of 1st International Electronic Conference on Toxins. https://doi.org/10.3390/iect2021-09116.
Gutiérrez, J., Escalante, T., Rucavado, A., & Herrera, C. (2016). Hemorrhage Caused by Snake Venom Metalloproteinases: A Journey of Discovery and Understanding †. Toxins, 8. https://doi.org/10.3390/toxins8040093.
Jensen C, Teng Y (2020) Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci 7:33. https://doi.org/10.3389/fmolb.2020.00033
Jorge RJB, Monteiro HS et al (2015) Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. J Proteomics 114:93–114. https://doi.org/10.1016/j.jprot.2014.11.011
Jyothsna KM, Sarkar P, Jha KK, Lal KrishnaRaghunathanBhat ASVR (2021) A biphasic response of polymerized Type 1 collagen architectures to dermatan sulfate. J Biomed Mater Res, Part A 109(9):1646–1656. https://doi.org/10.1002/jbm.a.37160
Larréché S, Chippaux JP, Chevillard L, Mathé S, Résière D, Siguret V, Mégarbane B (2021) Bleeding and thrombosis: Insights into pathophysiology of Bothrops venom-related hemostasis disorders. Int J Mol Sci 22(17):9643. https://doi.org/10.3390/ijms22179643
Lazarovici P, Marcinkiewicz C, Lelkes P (2020) Cell-based adhesion assays for isolation of snake venom’s integrin antagonists. Methods Mol Biol 2068:205–223. https://doi.org/10.1007/978-1-4939-9845-6_11
Luan Q, Becker J, Macaraniag C, Massad M, Zhou J, Shimamura T, Papautsky I (2022) Non-small cell lung carcinoma spheroid models in agarose microwells for drug response studies. Lab Chip. https://doi.org/10.1039/d2lc00244b
Malakpour-Permlid A, Buzzi I, Hegardt C, Johansson F, Oredsson S (2021) Identification of extracellular matrix proteins secreted by human dermal fibroblasts cultured in 3D electrospun scaffolds. Sci Rep 11(1):6655. https://doi.org/10.1038/s41598-021-85742-0
Marinho AD, da Silva EL, de Sousa Portilho AJ et al (2024) Three snake venoms from Bothrops genus induced apoptosis and cell cycle arrest in K562 human leukemic cell line. Toxicon 238:107547. https://doi.org/10.1016/j.toxicon.2023.107547
Maurer J, Walles T, Wiese-Rischke C (2023) Optimization of primary human bronchial epithelial 3D cell culture with donor-matched fibroblasts and comparison of two different culture media. Int J Mol Sci 24(4):4113. https://doi.org/10.3390/ijms24044113
McGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., ... & Green, D. R. (1995). The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol, 46, 153–185. https://doi.org/10.1016/S0091-679X(08)61929-9
Mead TJ, Bhutada S, Martin DR, Apte SS (2022) Proteolysis: a key post-translational modification regulating proteoglycans. Am J Physiol Cell Physiol 323(3):C651–C665. https://doi.org/10.1152/ajpcell.00215.2022
Menezes, R., Mello, C., Lima, D., Tessarolo, L., Sampaio, T., Paes, L., Alves, N., Junior, E., Júnior, R., Toyama, M., & Martins, A. (2016). Involvement of Nitric Oxide on Bothropoides insularis Venom Biological Effects on Murine Macrophages In Vitro. PLoS ONE, 11. https://doi.org/10.1371/journal.pone.0151029.
Moreira, V., Leiguez, E., Janovits, P., Maia-Marques, R., Fernandes, C., & Teixeira, C. (2021). Inflammatory Effects of Bothrops Phospholipases A2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins, 13. https://doi.org/10.3390/toxins13120868.
Nundes RN, Almeida AE, Moura WC, Gonzalez MS, Araújo HP (2024) A cytotoxicity assay as an alternative to the murine model for the potency testing of Bothrops jararaca venom and antivenom: an intralaboratory pre-validation study. Altern Lab Anim 52(2):82–93. https://doi.org/10.1177/02611929241237518
Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., & Ohtsuki, M. (2016). Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. International Journal of Molecular Sciences, 17. https://doi.org/10.3390/ijms17060868.
Polonchuk L, Chabria M, Badi L, Hoflack JC, Figtree G, Davies MJ, Gentile C (2017) Cardiac spheroids as promising in vitro models to study the human heart microenvironment. Sci Rep 7(1):7005. https://doi.org/10.1038/s41598-017-06385-8
Resiere D, Kallel H, Florentin J, Houcke S, Mehdaoui H et al (2023) Bothrops (Fer-de-lance) snakebites in the French departments of the Americas (Martinique and Guyana): Clinical and experimental studies and treatment by immunotherapy. PLoS Negl Trop Dis 17(2):e0011083. https://doi.org/10.1371/journal.pntd.0011083
Ruiz-Ojeda FJ, Méndez-Gutiérrez A, Aguilera CM, Plaza-Díaz J (2019) Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int J Mol Sci 20(19):4888. https://doi.org/10.3390/ijms20194888
Sánchez-Porras D, Durand-Herrera D, Paes AB, Chato-Astrain J, Verplancke R, Vanfleteren J et al (2021) Ex vivo generation and characterization of human hyaline and elastic cartilaginous microtissues for tissue engineering applications. Biomedicines 9(3):292. https://doi.org/10.3390/biomedicines9030292
Sánchez-Porras D, Varas J, Godoy-Guzmán C, Bermejo-Casares F, San Martín S, Carriel V (2023) Histochemical and immunohistochemical methods for the identification of proteoglycans. Methods Mol Biol 2566:85–98. https://doi.org/10.1007/978-1-0716-2675-7_7
Scalise M, Marino F, Salerno L, Amato N, Quercia C, Siracusa C, Filardo A, Chiefalo A, Pagano L, Misdea G, Salerno N, Angelis A, Urbanek K, Viglietto G, Torella D, Cianflone E (2023) Adult multipotent cardiac progenitor-derived spheroids: a reproducible model of in vitro cardiomyocyte commitment and specification. Cells 12. https://doi.org/10.3390/cells12131793
Tolba RH (2024) Aktuelle Regelungen im Tierschutzgesetz und Bedeutung für die tierexperimentelle Forschung. Orthopädie 53:336–340. https://doi.org/10.1007/s00132-024-04493-8
Wang Y, Wu D, Wu G, Wu J, Lu S, Lo J, He Y, Zhao C, Zhao X, Zhang H, Wang S (2020) Metastasis-on-a-chip mimicking the progression of kidney cancer in the liver for predicting treatment efficacy. Theranostics 10(1):300–311. https://doi.org/10.7150/thno.38736
World Health Organization - WHO, 2023 [viewed 29 April 2024]. Snakebite envenoming. Key facts [online]. Available from: https:///www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
Zhang B, Li Y, Wang G, Jia Z, Li H, Peng Q, Gao Y (2018) Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells. J Mater Sci - Mater Med 29:1–9. https://doi.org/10.1007/s10856-018-6058-0
Zhang, W., Liu, Y., & Zhang, H. (2021). Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell & Bioscience, 11. https://doi.org/10.1186/s13578-021-00579-4.
Acknowledgements
This study was financially supported by grant PI-0257-2017 from Consejería de Salud y Familias, Junta de Andalucía, España and CTS-115 (Tissue Engineering Group), by Coimbra Scholarship Programme for Young Professors and Researchers from Latin American Universities and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors would like to thank the Multi-User Facility of Drug Research and Development Center (NPDM) of the Federal University of Ceara for technical support. The authors would also like to thank Prof. Dr. Nylane Maria Nunes de Alencar, coordinator of the Laboratory of Biochemical Pharmacology at NPDM - UFC, for kindly providing the L929 cell line.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Andrade, F.R.S., da Silva, E.L., Marinho, A.D. et al. A new 3D model of L929 fibroblasts microtissues uncovers the effects of Bothrops erythromelas venom and its antivenom. Arch Toxicol 98, 3503–3512 (2024). https://doi.org/10.1007/s00204-024-03824-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00204-024-03824-0