Skip to main content

Advertisement

Log in

Transcriptome analysis reveals lung-specific miRNAs associated with impaired mucociliary clearance induced by cigarette smoke in an in vitro human airway tissue model

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Exposure to cigarette smoke (CS) is strongly associated with impaired mucociliary clearance (MCC), which has been implicated in the pathogenesis of CS-induced respiratory diseases, such as chronic obstructive pulmonary diseases (COPD). In this study, we aimed to identify microRNAs (miRNAs) that are associated with impaired MCC caused by CS in an in vitro human air–liquid-interface (ALI) airway tissue model. ALI cultures were exposed to CS (diluted with 0.5 L/min, 1.0 L/min, and 4.0 L/min of clean air) from smoking five 3R4F University of Kentucky reference cigarettes under the International Organization for Standardization (ISO) machine smoking regimen, every other day for 1 week (a total of 3 days, 40 min/day). Transcriptome analyses of ALI cultures exposed to the high concentration of CS identified 5090 differentially expressed genes and 551 differentially expressed miRNAs after the third exposure. Genes involved in ciliary function and ciliogenesis were significantly perturbed by repeated CS exposures, leading to changes in cilia beating frequency and ciliary protein expression. In particular, a time-dependent decrease in the expression of miR-449a, a conserved miRNA highly enriched in ciliated airway epithelia and implicated in motile ciliogenesis, was observed in CS-exposed cultures. Similar alterations in miR-449a have been reported in smokers with COPD. Network analysis further indicates that downregulation of miR-449a by CS may derepress cell-cycle proteins, which, in turn, interferes with ciliogenesis. Investigating the effects of CS on transcriptome profile in human ALI cultures may provide not only mechanistic insights, but potential early biomarkers for CS exposure and harm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Funding

This work is supported by the U.S. Food and Drug Administration Center for Tobacco Products (CTP) through an intra-agency agreement between National Center for Toxicological Research and CTP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefei Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, R., Wu, L., Wu, Y. et al. Transcriptome analysis reveals lung-specific miRNAs associated with impaired mucociliary clearance induced by cigarette smoke in an in vitro human airway tissue model. Arch Toxicol 95, 1763–1778 (2021). https://doi.org/10.1007/s00204-021-03016-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-021-03016-0

Keywords

Navigation