Skip to main content
Log in

Metabolomic network analysis of estrogen-stimulated MCF-7 cells: a comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis

  • Molecular Toxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In the context of the Human Toxome project, mass spectroscopy-based metabolomics characterization of estrogen-stimulated MCF-7 cells was studied in order to support the untargeted deduction of pathways of toxicity. A targeted and untargeted approach using overrepresentation analysis (ORA), quantitative enrichment analysis (QEA) and pathway analysis (PA) and a metabolite network approach were compared. Any untargeted approach necessarily has some noise in the data owing to artifacts, outliers and misidentified metabolites. Depending on the chemical analytical choices (sample extraction, chromatography, instrument and settings, etc.), only a partial representation of all metabolites will be achieved, biased by both the analytical methods and the database used to identify the metabolites. Here, we show on the one hand that using a data analysis approach based exclusively on pathway annotations has the potential to miss much that is of interest and, in the case of misidentified metabolites, can produce perturbed pathways that are statistically significant yet uninformative for the biological sample at hand. On the other hand, a targeted approach, by narrowing its focus and minimizing (but not eliminating) misidentifications, renders the likelihood of a spurious pathway much smaller, but the limited number of metabolites also makes statistical significance harder to achieve. To avoid an analysis dependent on pathways, we built a de novo network using all metabolites that were different at 24 h with and without estrogen with a p value <0.01 (53) in the STITCH database, which links metabolites based on known reactions in the main metabolic network pathways but also based on experimental evidence and text mining. The resulting network contained a “connected component” of 43 metabolites and helped identify non-endogenous metabolites as well as pathways not visible by annotation-based approaches. Moreover, the most highly connected metabolites (energy metabolites such as pyruvate and alpha-ketoglutarate, as well as amino acids) showed only a modest change between proliferation with and without estrogen. Here, we demonstrate that estrogen has subtle but potentially phenotypically important alterations in the acyl-carnitine fatty acids, acetyl-putrescine and succinoadenosine, in addition to likely subtle changes in key energy metabolites that, however, could not be verified consistently given the technical limitations of this approach. Finally, we show that a network-based approach combined with text mining identifies pathways that would otherwise neither be considered statistically significant on their own nor be identified via ORA, QEA, or PA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. http://www.molgenis.org/c2cards/molgenis.do (last accessed 27 Sept 2015).

References

  • Aittokallio T, Kurki M, Nevalainen O, Nikula T, West A, Lahesmaa R (2003) Computational strategies for analyzing data in gene expression microarray experiments. J Bioinform Comput Biol 1:541–586

    Article  CAS  PubMed  Google Scholar 

  • Bouhifd M, Hartung T, Hogberg HT, Kleensang A, Zhao L (2013) Review: toxicometabolomics. J Appl Toxicol 33:1365–1383. doi:10.1002/jat.2874

    Article  CAS  PubMed  Google Scholar 

  • Bouhifd M, Hogberg HT, Kleensang A, Maertens A, Zhao L, Hartung T (2014) Mapping the human toxome by systems toxicology. Basic Clin Pharmacol Toxicol 115:24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhifd M, Andersen ME, Baghdikian C, Boekelheide K, Crofton KM, Fornace AJ Jr, Kleensang A, Li H, Livi C, Maertens A, McMullen PD, Rosenberg M, Thomas R, Vantangoli M, Yager JD, Zhao L, Hartung T (2015a) The human toxome project. ALTEX 32:112–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouhifd M, Beger R, Flynn T, Guo L, Harris G, Hogberg H, Kaddurah-Daouk R, Kamp H, Kleensang A, Maertens A, Odwin-DaCosta S, Pamies D, Robertson D, Smirnova L, Sun J, Zhao L, Hartung T (2015b) Quality assurance of metabolomics. ALTEX 32:319–326

    Article  PubMed  Google Scholar 

  • Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, Herwig R, Ebbels TM, Keun HC (2011) Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 7:e1001113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Park HC, Goligorsky MS, Chander P, Fischer SM, Gross SS (2012) Untargeted plasma metabolite profiling reveals the broad systemic consequences of xanthine oxidoreductase inactivation in mice. PLoS ONE 7:e37149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fini MA, Orchard-Webb D, Kosmider B, Amon JD, Kelland R, Shibao G, Wright RM (2008) Migratory activity of human breast cancer cells is modulated by differential expression of xanthine oxidoreductase. J Cell Biochem 105:1008–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC (2004) A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20:93–99

    Article  CAS  PubMed  Google Scholar 

  • Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA (2005) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 33:D514–D517

    Article  CAS  PubMed  Google Scholar 

  • Hartung T, McBride M (2011) Food for thought… on mapping the human toxome. ALTEX 28:83–93

    Article  PubMed  Google Scholar 

  • Hartung T, van Vliet E, Jaworska J, Bonilla L, Skinner N, Thomas R (2012) Systems toxicology. ALTEX 29:119–128

    Article  PubMed  Google Scholar 

  • ICCVAM (2003) Interagency coordinating committee on the validation of alternative methods evaluation of in vitro test methods for detecting potential endocrine disruptors: estrogen receptor and androgen receptor binding and transcriptional activation assays. NIH Publication No. 03-4503

  • ICCVAM (2006) NICEATM pre-screen evaluation of the in vitro endocrine disruptor assay (Robotic MCF-7 Cell Proliferation Assay of Estrogenic Activity). https://ntp.niehs.nih.gov/iccvam/methods/endocrine/endodocs/cciprescreeneval.pdf. Accessed 27 Mar 2016

  • Kamburov A, Cavill R, Ebbels TM, Herwig R, Keun HC (2011) Integrated pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. Bioinformatics 27:2917–2918

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katajamaa M, Oresic M (2007) Data processing for mass spectrometry-based metabolomics. J Chromatogr A 1158:318–328

    Article  CAS  PubMed  Google Scholar 

  • Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King K, Rubin G (2003) A history of diabetes: from antiquity to discovering insulin. Br J Nurs 12:1091–1095

    Article  PubMed  Google Scholar 

  • Kleensang A, Maertens A, Rosenberg M, Fitzpatrick S, Lamb J, Auerbach S, Brennan R, Crofton KM, Gordon B, Fornace AJ Jr, Gaido K, Gerhold D, Haw R, Henney A, Ma’ayan A, McBride M, Monti S, Ochs MF, Pandey A, Sharan R, Stierum R, Tugendreich S, Willett C, Wittwehr C, Xia J, Patton GW, Arvidson K, Bouhifd M, Hogberg HT, Luechtefeld T, Smirnova L, Zhao L, Adeleye Y, Kanehisa M, Carmichael P, Andersen ME, Hartung T (2014) t4 workshop report: pathways of Toxicity. ALTEX 31:53–61

    Article  PubMed  Google Scholar 

  • Kleensang A, Vantangoli M, Andersen ME, Boekelheide K, Bouhifd M, Fornace AJ, Jr., Maertens A, Rosenberg M, Yager JD, Hartung T (2015) Irreproducibility: why genotyping cells is necessary, but not necessarily sufficient. Nature Sci Rep (revised)

  • Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P (2008) STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 36:D684–D688

    Article  CAS  PubMed  Google Scholar 

  • Maertens A, Luechtefeld T, Kleensang A, Hartung T (2015) MPTP’s pathway of toxicity indicates central role of transcription factor SP1. Arch Toxicol 89:743–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu W, Knight E, Xia Q, McGarvey BD (2014) Comparative evaluation of eight software programs for alignment of gas chromatography-mass spectrometry chromatograms in metabolomics experiments. J Chromatogr A 1374:199–206

    Article  CAS  PubMed  Google Scholar 

  • Pluskal T, Castillo S, Villar-Briones A, Oresic M (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform 11:395

    Article  Google Scholar 

  • Popescu L, Yona G (2005) Automation of gene assignments to metabolic pathways using high-throughput expression data. BMC Bioinform 6:217

    Article  Google Scholar 

  • Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M, Donley B, Fischer SM, Ekman DR, Fabian E, Guillou C, Heuer J, Hogberg HT, Jungnickel H, Keun HC, Krennrich G, Krupp E, Luch A, Noor F, Peter E, Riefke B, Seymour M, Skinner N, Smirnova L, Verheij E, Wagner S, Hartung T, van Ravenzwaay B, Leist M (2013) Metabolomics in toxicology and preclinical research. ALTEX 30:209–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stobbe MD, Houten SM, Jansen GA, van Kampen AHC, Moerland PD (2011) Critical assessment of human metabolic pathway databases: a stepping stone for future integration. BMC Syst Biol 5:165. doi:10.1186/1752-0509-5-165

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, Sudarshan S, Licht JD, Deberardinis RJ, Chandel NS (2013) The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell 51:236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taibi G, Di Gaudio F, Nicotra CM (2008) Xanthine dehydrogenase processes retinol to retinoic acid in human mammary epithelial cells. J Enzyme Inhib Med Chem 23:317–327

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT, Marks JR (2014) A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res 16:415

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Devereux W, Stewart TM, Casero RA Jr (1999) Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J Biol Chem 274:22095–22101

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS (2011) Advances in metabolite identification. Bioanalysis 3:1769–1782

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38:W71–W77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37:W652–W660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0–making metabolomics more meaningful. Nucleic Acids Res 43:W251–W257

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeman J, Krijt J, Stratilova L, Hansikova H, Wenchich L, Kmoch S, Chrastina P, Houstek J (2000) Abnormalities in succinylpurines in fumarase deficiency: possible role in pathogenesis of CNS impairment. J Inherit Metab Dis 23:371–374

    Article  CAS  PubMed  Google Scholar 

  • Zikanova M, Krijt J, Hartmannova H, Kmoch S (2005) Preparation of 5-amino-4-imidazole-N-succinocarboxamide ribotide, 5-amino-4-imidazole-N-succinocarboxamide riboside and succinyladenosine, compounds usable in diagnosis and research of adenylosuccinate lyase deficiency. J Inherit Metab Dis 28:493–499

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an NIH Transformation Research Grant, “Mapping the Human Toxome by Systems Toxicology” (RO1 ES 020750). We are most grateful of the collaboration and discussions, which made this work possible, to the following individuals and their coworkers: Dr. Melvin E. Andersen, Dr. Patrick D. McMullen and Salil Pendse at The Hamner Institute, Research Triangle Park, NC, USA, Dr. Kim Boekelheide and Dr. Marguerite Vantangoli at Brown University, Pathology and Laboratory Medicine, Providence, RI, USA, Dr. Kevin M. Crofton and Dr. Russell Thomas at EPA, National Center for Computational Toxicology, Research Triangle Park, NC, USA, Dr. Albert J. Fornace Jr. and Henghong Li at Georgetown University Medical Center, Washington, DC, USA, as well as Dr. Carolina Livi and Dr. Michael Rosenberg at Agilent Inc., Santa Clara, CA, USA. The authors thank Dr. Steven Gross and his team at Cornell University for performing the targeted metabolomics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartung.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maertens, A., Bouhifd, M., Zhao, L. et al. Metabolomic network analysis of estrogen-stimulated MCF-7 cells: a comparison of overrepresentation analysis, quantitative enrichment analysis and pathway analysis versus metabolite network analysis. Arch Toxicol 91, 217–230 (2017). https://doi.org/10.1007/s00204-016-1695-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1695-x

Keyword

Profiles

  1. Thomas Hartung