Skip to main content
Log in

Effect of methylmercury administration on choroid plexus function in rats

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Methylmercury (MeHg) is a well-known environmental neurotoxin. The choroid plexus (CP), the main component of the blood–cerebrospinal fluid (CSF) barrier (BCSFB), protects the brain from xenobiotics, similar to the blood–brain barrier. Because CP is considered a critical target site of MeHg-induced neurotoxic damage, functional alterations in CP may be caused in relation to the extent of MeHg-induced brain injury. To test this hypothesis, we examined time-dependent pathological alterations in rats administered subtoxic (asymptomatic group) or toxic (symptomatic group) MeHg doses for 3 weeks after the cessation of MeHg administration. We primarily assessed (1) mercury concentrations in the brain, CSF, and plasma; (2) histopathological changes in the brain; (3) albumin CSF/plasma concentration quotient (Qalb), an index of BCSFB dysfunction; and (4) concentration of CSF transthyretin (TTR), which is primarily produced in CP. Mercury concentrations in the brain, CSF, and plasma decreased, and Qalb and CSF TTR concentrations did not change significantly in the asymptomatic group. In the symptomatic group, brain and CSF mercury concentrations did not decrease for 2 weeks after the cessation of MeHg administration, but no pathological alteration occurred in the brain during this period. Pathological changes in the cerebellum became evident 3 weeks after the cessation of MeHg administration. Furthermore, Qalb continued to increase after the cessation of MeHg administration, whereas no decrease in CSF TTR concentration was observed, indicating selective impairment of CP function. These findings suggest that MeHg at toxic doses causes selective functional alteration of CP before leading to pathological alterations in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BBB:

blood–brain barrier

BCSFB:

blood–CSF barrier

CNS:

central nervous system

CP:

choroid plexus

CSF:

cerebrospinal fluid

Ct:

threshold cycles

GFAP:

glial fibrillary acidic protein

MeHg:

methylmercury

MUSTag:

Multiple Simultaneous Tag

Qalb :

CSF/plasma concentration quotient

RT-PCR:

reverse transcriptase-polymerase chain reaction

SELDI-TOF–MS:

surface-enhanced laser desorption ionization-time-of-flight-mass spectrometry

TTR:

transthyretin

TUNEL:

terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling

References

  • Andersson M, Alvarez-Cermeño J, Bernardi G, Cogato I, Fredman P, Frederiksen J, Fredrikson S, Gallo P, Grimaldi LM, Grønning M, Keir G, Lamers K, Link H, Magalhães A, Massaro AR, Öhman S, Reiber H, Rönnbäck L, Schluep M, Schuller E, Sindic CJM, Thompson EJ, Trojano M, Wurster U (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry 57: 897–902

    Google Scholar 

  • Bradbury MW (1984) The structure and function of the blood-brain barrier. Fed Proc 43:186–190

    PubMed  CAS  Google Scholar 

  • Broadwell RD, Sofroniew MV (1993) Serum proteins bypass the blood-brain fluid barriers for extracellular entry to the central nervous system. Exp Neurol 120:245–263

    Article  PubMed  CAS  Google Scholar 

  • Choi BH (1989) The effects of methylmercury on the developing brain. Prog Neurobiol 32:447–470

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34:369–403

    Article  PubMed  CAS  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  PubMed  CAS  Google Scholar 

  • Dickson PW, Aldred AR, Marley PD, Tu GF, Howlett GJ, Schreiber G (1985) High prealbumin and transferring mRNA levels in the choroid plexus of rat brain. Biochem Biophys Res Commun 127:890–895

    Article  PubMed  CAS  Google Scholar 

  • Eto K (2000) Minamata disease. Neuropathology 20:S14–S19

    Article  PubMed  Google Scholar 

  • Herbert J, Wilcox JN, Pham KT, Fremeau RT Jr, Zeviani M, Dwork A, Soprano DR, Makover A, Goodman DS, Zimmerman EA, Roberts JL, Schon E (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. Neurology 36:900–911

    PubMed  CAS  Google Scholar 

  • Ingenbleek Y, Young V (1994) Transthyretin (prealbumin) in health and disease: nutritional implications. Annu Rev Nutr 14:495–533

    Article  PubMed  CAS  Google Scholar 

  • Johanson CE (1995) Ventricles and cerebrospinal fluid. In: Conn MP (ed) Neuroscience in medicine. Lippincott, Philadelphia, pp 171–196

    Google Scholar 

  • Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    Article  PubMed  Google Scholar 

  • Møller-Madsen B (1991) Localization of mercury in CNS of the rat. III. Oral administration of methylmercuric chloride (CH3HgCl). Fundam Appl Toxicol 16:172–187

    Article  PubMed  Google Scholar 

  • Mori N, Yasutake A, Hirayama K (2007) Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity. Arch Toxicol 81:769–776

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa T, Uenoyama H, Tanida K, Ohmae T (1977) Ultra trace mercury analysis by dry thermal decomposition in alumina porcelain tube. J Hyg Chem 23:13–22

    CAS  Google Scholar 

  • Pardridge WM (1988) Recent advances in blood-brain barrier transport. Annu Rev Pharmacol Toxicol 28:25–39

    Article  PubMed  CAS  Google Scholar 

  • Reiber H (1997) CSF flow—its influence on CSF concentration of brain-derived and blood derived proteins. In: Teelken A, Korf J (eds) Neurochemistry. Plenum, New York, pp 423–432

    Google Scholar 

  • Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 310:173–186

    Article  PubMed  CAS  Google Scholar 

  • Sakai K (1975) Time-dependent distribution of 203Hg-methylmercuric chloride in tissues and cells of rats. Jpn J Exp Med 45:63–77

    PubMed  CAS  Google Scholar 

  • Schreiber G, Aldred AR, Jaworowski A, Nilsson C, Achen MG, Segal MB (1990) Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol 258:R338–R345

    PubMed  CAS  Google Scholar 

  • Shibasaki F, Morizane Y, Ishikawa Y, Makisaka N, Komata Y, Chen L, Uchida K (2008) Clinical application of supersensitive and multiplex assay, MUSTag technology. Rinsho Byori 56:802–810

    PubMed  CAS  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (1999) Demonstration of a coupled metabolism-efflux process at the choroid plexus as a mechanism of brain protection toward xenobiotics. J Neurosci 19:6275–6289

    PubMed  CAS  Google Scholar 

  • Strazielle N, Ghersi-Egea JF (2000) Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 59:561–574

    PubMed  CAS  Google Scholar 

  • Suda I, Eto K, Tokunaga H, Furusawa R, Suetomi K, Takahashi H (1989) Different histochemical findings in the brain produced by mercuric chloride and methyl mercury chloride in rats. Neurotoxicology 10:113–125

    PubMed  CAS  Google Scholar 

  • Takeuchi T, Eto K, Tokunaga H (1989) Mercury level and histochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neurotoxicology 10:651–657

    PubMed  CAS  Google Scholar 

  • Tokuomi H, Okajima T, Kanai J, Tsunoda M, Ichiyasu Y, Misumi H, Shimomura K, Takaba M (1961) Minamata disease—an unusual neurological disorder occurring in Minamata, Japan. Kumamoto Med J 14:47–64

    Google Scholar 

  • Wojtczak A (1997) Crystal structure of rat transthyretin at 2.5 A resolution: first report on a unique tetrameric structure. Acta Biochim Pol 44:505–517

    PubMed  CAS  Google Scholar 

  • Yasutake A, Hirayama K (1986) Strain difference in mercury excretion in methylmercury-treated mice. Arch Toxicol 59:99–102

    Article  PubMed  CAS  Google Scholar 

  • Yasutake A, Hirayama K, Inoue M (1989) Mechanism of urinary excretion of methylmercury in mice. Arch Toxicol 63:479–483

    Article  PubMed  CAS  Google Scholar 

  • Yasutake A, Nakano A, Hirayama K (1998) Induction by mercury compounds of brain metallothionein in rats: HgO exposure induces long-lived brain metallothionein. Arch Toxicol 72:187–191

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Perry DF, Nelson DL, Aposhian HV (1991) Choroid plexus protects cerebrospinal fluid against toxic metals. FASEB J 5:2188–2193

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. N. Tabata, Ms. M. Ogata, and Ms. A. Onitsuka for their technical assistance in various analyses. The experimental protocol was approved by the Ethics Committee for Research on Animals at the National Institute for Minamata Disease.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Nakamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Yasutake, A., Fujimura, M. et al. Effect of methylmercury administration on choroid plexus function in rats. Arch Toxicol 85, 911–918 (2011). https://doi.org/10.1007/s00204-010-0623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0623-8

Keywords

Navigation