Skip to main content

Advertisement

Log in

PARP-1 expression and activity in primary human lung cells

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Activation of poly(ADP-ribose) polymerase-1 (PARP-1) in response to DNA damage is an important mechanism to keep homeostasis or to trigger apoptosis. The expression and function of (PARP-1) was studied in primary cells cultured from human lung. Normal human bronchial epithelial cells (NHBEC) and peripheral lung cells (PLC) from lung cancer patients were grown as explant cultures and were followed over a period of 12 weeks. PARP-1 protein was expressed in all explant cultures from bronchial epithelium. The levels of PARP protein differed between individuals by a factor of 2.3 in the first explant. Three cases were followed for more than 100 days. The expression levels varied intra-individually by a factor of 1.3–1.4 over this time period. PARP-1 activity was determined immunohistochemically after induction of DNA damage with H2O2 (0.05–0.3 mM, 5 min). The fluorescence signal for ADP-ribose polymers attached to chromatin proteins correlated well with the concentration of H2O2. PARP-1 activity differed by a factor of 3.1 in NHBECs obtained from the first generation of explants from 11 cases. PARP-1 activity is present in NHBECs until the 8th and in PLCs until the 12th week and declined to about half of the start level. Primary cultures of NHBECs and PLC are suitable to study the effect of external factors on PARP-1 expression and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adelfalk C, Kontou M, Hirsch-Kauffmann M, Schweiger M (2003) Physical and functional interaction of the Werner syndrome protein with poly-ADP ribosyl transferase. FEBS Lett 554:55–58

    Article  PubMed  CAS  Google Scholar 

  • Amé JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893

    Article  PubMed  Google Scholar 

  • Bizec JC, Klethi J, Mandel P (1989) Regulation of protein adenosine diphosphate ribosylation in bovine lens during aging. Ophthalmic Res 21:175–183

    Article  PubMed  CAS  Google Scholar 

  • Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31:446–454

    Article  PubMed  CAS  Google Scholar 

  • Bürkle A (2001a) PARP-1: a regulator of genomic stability linked with mammalian longevity. Chembiochem 2:725–728

    Article  PubMed  Google Scholar 

  • Bürkle A (2001b) Physiology and pathophysiology of poly(ADPribosyl) ation. BioEssays 23:795–806

    Article  PubMed  Google Scholar 

  • Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Soto M, Pérez JM (2006) Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors in cancer chemotherapy. Recent Patents Anticancer Drug Discov 1:39–53

    Article  CAS  Google Scholar 

  • Cherney BW, McBride OW, Chen DF, Alkhatib H, Bhatia K, Hensley P, Smulson ME (1987) cDNA sequence, protein structure, and chromosomal location of the human gene for poly(ADPribose) polymerase. Proc Natl Acad Sci USA 84:8370–8374

    Article  PubMed  CAS  Google Scholar 

  • D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249–268

    Article  PubMed  Google Scholar 

  • Endres M, Scott G, Namura S, Salzman AL, Huang PL, Moskowitz MA, Szabó C (1998) Role of peroxynitrite and neuronal nitric oxide synthase in the activation of poly(ADP-ribose) synthetase in a murine model of cerebral ischemia-reperfusion. Neurosci Lett 248:41–44

    Article  PubMed  CAS  Google Scholar 

  • Faro R, Toyoda Y, McCully JD, Jagtap P, Szabo E, Virag L, Bianchi C, Levitsky S, Szabo C, Sellke FW (2002) Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Ann Thorac Surg 73:575–581

    Article  PubMed  Google Scholar 

  • Fiorillo C, Pace S, Ponziani V, Nediani C, Perna AM, Liguori P, Cecchi C, Nassi N, Donzelli GP, Formigli L, Nassi P (2002) Poly(ADP-ribose) polymerase activation and cell injury in the course of rat heart heterotopic transplantation. Free Radic Res 36:79–87

    Article  PubMed  CAS  Google Scholar 

  • Flohr C, Bürkle A, Radicella JP, Epe B (2003) Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein. Nucl Acids Res 31:5332–5337

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb RD, Marton A, Szabó E, Virág L, Salzman AL, Glock D, Akhter I, McCarthy R, Parrillo JE, Szabó C (2002) Protective effect of a novel, potent inhibitor of poly(ADPribose) synthetase in a porcine model of severe bacterial sepsis. Crit Care Med 30:974–980

    Article  PubMed  CAS  Google Scholar 

  • Grube K, Bürkle A (1992) Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci USA 89:11759–11763

    Article  PubMed  CAS  Google Scholar 

  • Jackowski G, Kun E (1981) Age-dependent variation of rates of polyadenosine-diphosphoribose synthesis by cardiocyte nuclei and the lack of correlation of enzymatic activity with macromolecular size distribution of DNA. J Biol Chem 256:3667–3670

    PubMed  CAS  Google Scholar 

  • Kurosaki T, Ushiro H, Mitsuuchi Y, Suzuki S, Matsuda M, Matsuda Y, Katunuma N, Kangawa K, Matsuo H, Hirose T (1987) Primary structure of human poly(ADP-ribose) synthetase as deduced from cDNA sequence. J Biol Chem 262:15990–15997

    PubMed  CAS  Google Scholar 

  • Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R (2003) Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice. Am J Pathol 162:1559–1569

    Article  PubMed  CAS  Google Scholar 

  • Lehmann T, Köhler C, Weidauer E, Taege C, Foth H (2001) Expression of MRP1 and related transporters in human lung cells in culture. Toxicology 5:59–72

    Article  Google Scholar 

  • Lehmann T, Torky A, Stehfest E, Hofmann S, Foth H (2005) Expression of lung resistance-related protein, LRP, and multidrug resistance related protein, MRP1. in normal human lung cells in long-term cultures. Arch Toxicol 79:600–609

    Article  PubMed  CAS  Google Scholar 

  • Li J, Huang CY, Zheng RL, Cui KR, Li JF (2000) Hydrogen peroxide induces apoptosis in human hepatoma cells and alters cell redox status. Cell Biol Int 24:9–23

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Ficca ML, Meyer RG, Jacobson EL, Jacobson MK (2005) Poly(ADP-ribose) polymerases: managing genome stability. Int J Biochem Cell Biol 37:920–926

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti VG, Stella AM (2003) Role of PARP under stress conditions: cell death or protection. Neurochem Res 28:187–194

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, Smith WJ, Ray R, Smulson ME (2000) Calmodulin, poly(ADP-ribose)polymerase and p53 are targets for modulating the effects of sulfur mustard. J Appl Toxicol 20(Suppl 1):S43–S49

    PubMed  CAS  Google Scholar 

  • Runge DM, Stock TW, Lehmann T, Taege C, Bernauer U, Beer Stolz D, Hofmann S, Foth H (2001) Expression of cytochrome P450 2E1 in normal human bronchial epithelial cells and activation by ethanol in culture. Arch Toxicol 75:335–345

    Article  PubMed  CAS  Google Scholar 

  • Smith S (2001) The world according to PARP. Trends Biochem Sci 26:174–179

    Article  PubMed  CAS  Google Scholar 

  • Stehfest E, Torky A, Glahn F, Foth H (2006) Non destructive micromethod for MRP1 functional assay in human lung tumor cells. Arch Toxicol 80:125–133

    Article  PubMed  CAS  Google Scholar 

  • Süsse S, Scholz CJ, Bürkle A, Wiesmüller L (2004) Poly(ADPribose) polymerase (PARP-1) and p53 independently function in regulating double strand break repair. Nucl Acids Res 32:669–680

    Article  PubMed  Google Scholar 

  • Tempera I, Cipriani R, Campagna G, Mancini P, Gatti A, Guidobaldi L, Pantellini F, Mandosi E, Sensi M, Quesada P, Mario UD, D’Erme M, Morano S (2005) Poly(ADP Ribose) Polymerase Activity Is Reduced in Circulating Mononuclear Cells From Type 2 Diabetic Patients. J Cell Physiol 205:387–392

    Article  PubMed  CAS  Google Scholar 

  • Tong WM, Cortes U, Wang ZQ (2001) Poly(ADP-ribose) polymerase: a guardian angel protecting the genome and suppressing tumorigenesis, Biochim. Biophys Acta 1552:27–37

    CAS  Google Scholar 

  • Torky AR, Stehfest E, Viehweger K, Taege C, Foth H (2005) Immuno-histochemical detection of MRPs in human lung cells in culture. Toxicology 207:437–450

    Article  PubMed  CAS  Google Scholar 

  • Torky A, Raemisch A, Glahn F, Foth H (2008) Arachidonic acid pathway activates multidrug resistance related protein in cultured human lung cells. Arch Tox 82:323–332

    Article  CAS  Google Scholar 

  • Virág L, Szabó C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429

    Article  PubMed  Google Scholar 

  • Von Kobbe C, Harrigan JA, May A, Opresko PL, Dawut L, Cheng WH, Bohr VA (2003) Central role for the Werner syndrome protein/poly(ADP-ribose) polymerase 1 complex in the poly(ADP-ribosyl)ation pathway after DNA damage. Mol Cell Biol 23:8601–8613

    Article  Google Scholar 

  • Watts JA, Grattan RM, Whithlow BS, Kline JA (2001) Actication of poly(ADP-ribose) polymers in severe hemorrhagic shock and resucsication. Am J Physiol Gastrointest Liver Physiol 281:G498–G506

    PubMed  CAS  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis- inducing factor. Science 297:259–263

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Deutsche Forschungsgesellschaft (DFG, Graduiertenkolleg 416) and the Institute for Science and Health, St Louis, USA (IFSH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Foth.

Additional information

Part of the doctoral thesis of M. Ahmad (MD).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, M., Torky, A., Glahn, F. et al. PARP-1 expression and activity in primary human lung cells. Arch Toxicol 85, 669–679 (2011). https://doi.org/10.1007/s00204-010-0604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0604-y

Keywords

Navigation