Skip to main content
Log in

The regulation of ribosomal RNA synthesis and bacterial cell growth

  • Minireview
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AdhyaS, GottesmanM (1982) Promoter occlusion: transcription through a promoter may inhibit its activity. Cell 29: 939–944

    Google Scholar 

  • BallCA, OsunaR, FergusonKC, JohnsonRC (1992) Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 174: 8043–8056

    Google Scholar 

  • BaracchiniE, BremerH (1988) Stringent and growth control of rRNA synthesis in Escherichia coli are both mediated by ppGpp. J Biol Chem 263: 2597–2602

    Google Scholar 

  • BaracchiniE, GlassR, BremerH (1988) Studies in vivo on Escherichia coli RNA polymerase mutants altered in the stringent repose. Mol Gen Genet 213: 379–387

    Google Scholar 

  • BatemanE, PauleMR (1988) Promoter occlusion during ribosomal RNA transcription. Cell 54: 985–992

    Google Scholar 

  • BertinP, LejeuneP, Laurent-WinterC, DanchinA (1990) Mutations in bglY, the structural gene for the DNA-binding protein H1, affect expression of several Escherichia coli genes. Biochiemie 72: 889–891

    Google Scholar 

  • BossiL, SmithDM (1984) Conformational change in the DNA associated with an unusual promoter mutation in a tRNA operon of Salmonella. Cell 39: 643–652

    Google Scholar 

  • CondonC, PhilipsJ, FuZY, SquiresCL (1992) Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. EMBO J 11: 4175–4185

    Google Scholar 

  • CsiszarK, LukacsovichT, VenetianerP (1980) Regulatory elements downstream of the promoter of an rRNA gene of E. coli. Biochim Biophys Acta 1050: 312–316

    Google Scholar 

  • DerschP, SchmidtK, BremerE (1993) Synthesis of the Escherichia coli K-12 nucleoidassociated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol Microbiol 8: 875–889

    Google Scholar 

  • DykeMvan, HertzbergRP, DervanPB (1982) Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA:DNA cleavage-inhibition patterns with methiumpropyl-EDTA-Fe(II). Proc Natl acad Sci USA 79: 5470–5474

    Google Scholar 

  • ElwoodM, NomuraM (1980) Deletion of a ribosomal RNA operon in Escherichia coli. J Bacteriol 143: 1077–1080

    Google Scholar 

  • EllwoodM, NomuraM (1982) Chromosomal locations of the genes for rRNA in Escherichia coli. J Bacteriol 149: 458–468

    Google Scholar 

  • EngbaekF, KjeldgaardNO, MaaløeO (1973) Chain growth rate of β-galactosidase during exponential grwoth and aminoacid starvation. J Mol Biol 75: 109–118

    Google Scholar 

  • GaalT, GourseRI (1990) Guanosine 3′-diphosphate 5′-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. Proc Natl Acad Sci USA 87: 5533–5537

    Google Scholar 

  • GallantJA (1979) Stringent control in E. coli. Annu Rev Genet 13: 393–415

    Google Scholar 

  • GausingK (1977) Regulation of ribosome production in Escherichia coli: synthesis and stability of ribosomal RNA and ribosomal protein messenger RNA at different growth rates. J Mol Biol 115: 335–354

    Google Scholar 

  • GentryD, XiaoH, BurgessR, CashelM (1991) The omega subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J Bacteriol 173: 3901–3903

    Google Scholar 

  • GilleH, EganJB, RothA, MesserW (1991) The Fis protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res 19: 4167–4172

    Google Scholar 

  • GlaserG, SarmientosP, CashelM (1983) Functional interrelationship between two tandem E. coli ribosomal RNA promoters. Nature 302: 74–76

    Google Scholar 

  • GosinkKK, RossW, LeirmoS, OsunaR, FinkelSE, JohnsonRC, GourseRL (1993) DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1. J Bacteriol 175: 1580–1589

    Google Scholar 

  • GourseRL (1988) Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. Nucleic Acids Res 16: 9789–9809

    Google Scholar 

  • Hengge-AronisR (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72: 165–168

    Google Scholar 

  • HernandezVJ, BremerH (1993) Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. J Biol Chem 268: 10851–10862

    Google Scholar 

  • HigginsCF, DormanCJ, StirlingDA, WaddellL, BoothIR, MayG, BremerE (1988) A physiological role for DNA superciling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52: 569–584

    Google Scholar 

  • HigginsCF, HintonJC, HultonCS, Owen-HughesT, PavittGD, SeirafiA (1990) Protein H1: a role for chromatin structire in the regulation of bacterial gene expression and virulence? Mol Microbiol 4: 2007–2012

    Google Scholar 

  • HillCW, HarnishBW (1982) Transposition of chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli. J Bacteriol 149: 449–457

    Google Scholar 

  • Hübner P, Arber W (1989) Mutational analysis of a prokaryotic recombinational enhancer element with two functions. EMBO J 577–585

  • HultonCS, SeirafiA, HintonJC, SidebothamJM, WaddellL, PavittGD, Owen-HughesT, SpasskyA, BucH, HigginsCF (1990) Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria. Cell 63: 631–642

    Google Scholar 

  • IgarashiK, FujitaN, IshihamaA (1989) Promoter selectivity of Escherichia coli RNA polymerase: omega factor is responsible for the ppGpp sensitivity. Nucleic Acids Res 17: 8755–8765

    Google Scholar 

  • JensenKF, PedersenS (1990) Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic appratus with substrates and catalytic components. Microbiol Rev 54: 89–100

    Google Scholar 

  • JohnsonRC, SimonMI (1985) Hin-mediated site-specific recombination requires two 36 bp recombination sites and a 60 bp recombinational enhancer. Cell 41: 781–791

    Google Scholar 

  • KahmannR, RudtF, KochC, MertensG (1985) G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41: 771–780

    Google Scholar 

  • KajitaniM, IshihamaA (1984) Promoter selectivity of Escherichia coli RNA polymerase: differential stringent control of the multiple promoters from ribosomal RNA and protein operons. J Biol Chem 259: 1951–1957

    Google Scholar 

  • KingstonRE, ChamberlinMJ (1981) Pausing and attenuation of in vitro transcription in the rrB operon of E. coli. Cell 27: 523–531

    Google Scholar 

  • LaTeanaA, BrandiA, FalconiM, SpurioR, PonCL, GualerziCO (1991) Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci USA 88: 10907–10911

    Google Scholar 

  • LamondIA (1985) The control of stable RNA synthesis in bacteria. Trends Biochem Sci 6: 271–274

    Google Scholar 

  • LamondAI, TraversAA (1983) Requirement for an upstream element for optimal transcription of a bacterial tRNA gene. Nature 305: 248–250

    Google Scholar 

  • LangertW, MeuthenM, MüllerK (1991) Functional characteristics of the rrnD promoters of Escherichia coli. J Biol Chem 266: 21606–21615

    Google Scholar 

  • LeirmoS, GourseRL (1991) Factor-independent activation of Escherichia coli rRNA transcription I. Kinetic analysis of the roles of the upstream activator region and supercoiling on transcription of the rrnB promoter in vitro. J Mol Biol 220: 555–568

    Google Scholar 

  • LiebkeHH, SpeyerJF (1983) A new gene in E. coli RNA Synthesis. Mol Gen Genet 189: 314–320

    Google Scholar 

  • LindahlL, ZengelJM (1986) Ribosomal genes in Escherichia coli. Annu Rev Genet 20: 297–326

    Google Scholar 

  • LukacsovichT, GaalT, VenetianerP (1989) The structural basis of the high in vivo strength of the rRNA P2 promoter of Escherichia coli. Gene 78: 189–194

    Google Scholar 

  • MariniC, LeveneSD, CrothersDM, EnglundPT (1982) Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci USA 79: 7664–7668

    Google Scholar 

  • MayG, DerschP, HaardtM, MiddendorfA, BremerE (1990) The osmZ (bg/Y) gene encodes the DNA-binding protein H-NS (Hla), a component of the Escherichia coli K12 nucleoid. Mol Gen Genet 224: 81–90

    Google Scholar 

  • Mizushima-SuganoJ, KaziroY (1985) Regulation of the expression of the tufB operon: DNA sequences directly involved in the stringent control. EMBO J 4: 1053–1058

    Google Scholar 

  • MorganEA, KaplanS (1976) Coordinate regulation of the individual ribosomal RNA operons in Escherichia coli. Biochem Biophys Res Commun 68: 969–974

    Google Scholar 

  • NachalielN, MelnickJ, GafnyR, GlaserG (1989) Ribosome associated protein (s) bind(s) to the upstream activator sequence of the E. coli rrnA P1 promoter. Nucleic Acids Res 17: 9811–9822

    Google Scholar 

  • NewlandsJT, JosaitisCA, RossW, GourseRL (1992) Both Fis-dependent and factor-independent upstream activation of the rrnB P1 promoter are face of the helix dependent. Nucleic Acids Res 20: 719–726

    Google Scholar 

  • NilssonL, VanetA, VijgenboomE, BoschL (1990) The role of Fis in trans activation of stable RNA operons of E. coli. EMBO J 9: 727–734

    Google Scholar 

  • NilssonL, VerbeekH, VijgenboomE, DrunenCvan, VanetA, BoschL (1992) Fis-dependent trans-activation of stable RNA operons of Escheichia coli under various growth conditions. J Bacteriol 174: 921–929

    Google Scholar 

  • NinnemannO, KochC, KahmannR (1992) The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J 11: 1075–1083

    Google Scholar 

  • NomuraM, GourseRL, BaughmanG (1984) Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 53: 75–117

    Google Scholar 

  • OostraBA, VlietAvan, AbG, GruberM (1981) Enhancement of rRNA synthesis by DNA gyrase activity in E. coli. J Bacteriol 148: 782–789

    Google Scholar 

  • Owen-HugesTA, PavittGD, SantosDS, SidebothamJM, HultonCSJ, HintonJCD, HigginsCF (1992) The chromatin-associated protein H-NS intracts with curved DNA to influence DNA topology and gene expression. Cell 71: 255–265

    Google Scholar 

  • OzakiM, FujitaN, WadaA, IshihamaA (1992) Promoter selectivity of the stationary-phase forms of Escherichia coli RNA polymerase and conversion in vitro of the S1 form enzyme into a log-phase enzyme-like form. Nucleic Acids Res 20: 257–261

    Google Scholar 

  • PlaskonRR, WartellRM (1987) Sequence distributions associated with DNA-curvature are found upstream of strong E. coli promoters. Nucleic Acids Res 15: 785–796

    Google Scholar 

  • PonCL, CalogeroRA, GualerziCO (1988) Identification, cloning, nucleotide sequence and chromosomal map location of hns, the structural gene for Escherichia coli DNA-binding protein H-NS. Mol Gen Genet 212: 199–202

    Google Scholar 

  • RossW, ThompsonJF, NewlandsJT, GourseRL (1990) E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 9: 3733–3742

    Google Scholar 

  • RyalsJ, LittleR, BremerH (1982) Control of rRNA and tRNA syntheses in Escherichia coli by guanosine tetraphosphate. J Bacteriol 151: 1261–1268

    Google Scholar 

  • SarmientosP, CashelM (1983) Carbon starvation and growth rate-dependent regulation of the Escherichia coli ribosomal RNA promoters: differential control of dual promoters. Proc Natl Acad Sci USA 80: 7010–7013

    Google Scholar 

  • SarientosP, SylvesterJE, ContenteS, CashelM (1983) Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell 32: 1337–1346

    Google Scholar 

  • SingerM, WalterWA, CaliBM, RouvierP, LiebkeHH, GourseRL, GrossCA (1991) Physiological effects of the fructose-1,6-diphosphate aldolase ts8 mutation on stable RNA synthesis in Escherichia coli. J Bacteriol 173: 6249–6257

    Google Scholar 

  • SvitilAL, CashelM, ZyskindJW (1993) Guanosine tetraphosphate inhibits protein synthesis in vivo. J Biol Chem 268: 2307–2311

    Google Scholar 

  • ThompsonJF, VargasMde, KochC, KahmannR (1987) Celular factors couple recombination with growth phase: characterization of a new component in the lambda site-specific recombination pathway. Cell 50: 901–908

    Google Scholar 

  • Tippner D, Afflerbach H, Bradaczek C, Wagner R (1993) Evidence for a regulatory function of the histone-like E. coli protein H-NS in ribosomal RNA synthesis. Mol Microbiol (in press)

  • TraversAA (1980) Promoter sequence for stringent control of bacterial RNA synthesis. J Bacteriol 141: 973–976

    Google Scholar 

  • UeguchiC, KakedaM, MizunoT (1993) Autoregulatory expression of the Escherichia coli hns gene encoding a nucleoid protein-H-NS functions as a repessor of its own transcription. Mol Gen Genet 236: 171–178

    Google Scholar 

  • VarshavskyAJ, NedospasovSA, BakajevaVV, GeorgievGP (1977) Histone-like proteins in the purified Escherichia coli desoxyribonucleoprotein. Nucleic Acids Res 4: 2725–2745

    Google Scholar 

  • VerbeekH, NilssonL, BalikoG, BoschL (1990) Potential binding sites of the trans-activator Fis are present upstream of all rRNA operons and of many but not all tRNA operons. Biochim Biophys Acta 1050: 302–306

    Google Scholar 

  • VerbeekH, NilssonL, BoschL (1992) The mechanism of trans-activation of the Escherichia coli operon thrU (tufB) by the protein Fis. A model. Nucleic Acids Res 20: 4077–4081

    Google Scholar 

  • VijgenboomF, NilssonL, BoschL (1988) The elongation factor EF-Tu from E. coli binds to the upstream activator region of the tRNA tufB operon. Nucleic Acids Res 16: 10183–10197

    Google Scholar 

  • VogelU, SørensenM, PedersenS, JensenKF, KilstrupM (1992) Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol Microbiol 6: 2191–2200

    Google Scholar 

  • WagnerR (1989) The synthesis and control of ribosomal RNA in bacteria. Life Sci Adv 8: 105–115

    Google Scholar 

  • WagnerR, TheißenG, ZachariasM (1992) Regulation of ribosomal RNA synthesis and control of ribosome formation in E. coli. In: NierhausKH, SubramanianAR, ErdmannVA, FranceschiF, Wittmann-LieboldB (eds) The translation apparatus. Plenum Publishing Corporation, New York (in press)

    Google Scholar 

  • WuHM, CrothersDM (1984) The locus of sequence-directed and protein-induced DNA bending. Nature 308: 509–513

    Google Scholar 

  • YamadaH, YoshidaT, TanakaK, SasakawaC, MizunoT (1991) Molecular analysis of the Escherichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol Gen Genet 230: 232–336

    Google Scholar 

  • YangHL, HellerK, GellertM, ZubayG (1979) Differential sensitivity of gene expression in vitro to inhibitors of DNA gyrase. Proc Natl Acad Sci USA 76: 3304–3308

    Google Scholar 

  • ZachariasM, GöringerHU, WagnerR (1989) Influence of the GCGC discriminator motif introduced into the ribosomal RNA P2-and tac promoter on growth rate control and stringent sensitivity. EMBO J 11: 3357–3363

    Google Scholar 

  • ZachariasM, GöringerHU, WagnerR (1990) The signal for growth rate control and stringent sensitivity in E. coli is not restricted to a particular sequence motif within the promoter region. Nucleic Acids Res 18: 6271–6275

    Google Scholar 

  • ZachariasM, WagnerR, GöringerHU (1990) Polyacrylamide gradient gel electrophoresis for the detection of bent DNA fragments. Nucleic Acids Res 18: 2827

    Google Scholar 

  • ZachariasM, TheißenG, BradaczekC, WagnerR (1991) Analysis of sequence elements important for the synthesis and control of ribosomal RNA in E. coli. Biochimie 73: 699–712

    Google Scholar 

  • ZachariasM, GöringerHU, WagnerR (1992) Analysis of the Fis-dependent and independent transcription activation mechanism of the E. coli ribosomal RNA P1 promoter. Biochemistry 31: 2621–2628

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, R. The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch. Microbiol. 161, 100–109 (1994). https://doi.org/10.1007/BF00276469

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276469

Keywords

Navigation