Skip to main content
Log in

Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H2O2) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila’ stress/virulence response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Abbreviations

NG:

Normal gravity

LSMMG:

Low-shear modeled microgravity

SEM:

Scanning electron microscopy

qRT‑PCR:

Quantitative reverse‑transcription‑PCR

H2O2 :

Hydrogen peroxide

HARVs:

High-aspect rotating vessels

RWV:

Rotating-wall vessel

CFU:

Colony forming unit

References

  • Albert-Weissenberger C, Sahr T, Sismeiro O, Hacker J Jr, Heuner K, Buchrieser C (2010) Control of flagellar gene regulation in Legionella pneumophila and its relation to growth phase. J Bacteriol 192:446–455

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Ordóñez A, Fernández A, López M, Arenas R, Bernardo A (2008) Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int J Food Microbiol 123:212–219

    Article  PubMed  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15: 0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Applied Environ Microbiol 63:3887–3894

    Article  CAS  ADS  Google Scholar 

  • Arunasri K, Adil M, Venu Charan K, Suvro C, Himabindu Reddy S, Shivaji S (2013) Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression. PLoS ONE 8:e57860

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Bodet C, Sahr T, Dupuy M, Buchrieser C, Héchard Y (2012) Legionella pneumophila transcriptional response to chlorine treatment. Water Res 46:808–816

    Article  CAS  PubMed  Google Scholar 

  • Castro SL, Nelman-Gonzalez M, Nickerson CA, Ott CM (2011) Induction of attachment-independent biofilm formation and repression of Hfq expression by low-fluid-shear culture of Staphylococcus aureu. Appl Environ Microbiol 77:6368–6378

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chang B, Amemura-Maekawa J, Kura F, Kawamura I, Watanabe H (2004) Expression of IL-6 and TNF-α in human alveolar epithelial cells is induced by invading, but not by adhering, Legionella pneumophila. Microb Pathog 37:295–302

    Article  CAS  PubMed  Google Scholar 

  • Chen CT et al (2018) Glabridin induces apoptosis and cell cycle arrest in oral cancer cells through the JNK1/2 signaling pathway. Environ Toxicol 33:679–685

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chihib N-E, Ribeiro da Silva M, Delattre G, Laroche M, Federighi M (2003) Different cellular fatty acid pattern behaviours of two strains of Listeria monocytogenes Scott A and CNL 895807 under different temperature and salinity conditions. FEMS Microbiol Lett 218:155–160

    Article  CAS  PubMed  Google Scholar 

  • Chopra V, Fadl A, Sha J, Chopra S, Galindo C, Chopra A (2006) Alterations in the virulence potential of enteric pathogens and bacterial–host cell interactions under simulated microgravity conditions. J Toxicol Environ Health Part A 69:1345–1370

    Article  CAS  Google Scholar 

  • Conover GM, Derré I, Vogel JP, Isberg RR (2003) The Legionella pneumophila LidA protein: a translocated substrate of the Dot/Icm system associated with maintenance of bacterial integrity. Mol Microbiol 48:305–321

    Article  CAS  PubMed  Google Scholar 

  • Crabbé A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P (2008) Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 10:2098–2110

    Article  PubMed  Google Scholar 

  • Crabbé A et al (2010) Response of Pseudomonas aeruginosa PAO1 to low shear modelled microgravity involves AlgU regulation. Environ Microbiol 12:1545–1564

    Article  PubMed  Google Scholar 

  • Dougan D, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59:1607–1616

    Article  CAS  PubMed  Google Scholar 

  • England LS, Gorzelak M, Trevors JT (2003) Growth and membrane polarization in Pseudomonas aeruginosa UG2 grown in randomized microgravity in a high aspect ratio vessel. Biochim Biophys Acta-General Subjects 1624:76–80

    Article  CAS  Google Scholar 

  • Gal-Mor O, Segal G (2003) Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol 185:4908–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigoriev A, Svetaylo E, Egorov A (1999) Manned interplanetary missions: prospective medical problems. Environ Med: Annu Rep Res Inst Environ, Nagoya Univ 42:83–94

    Google Scholar 

  • Hammond T, Hammond J (2001) Optimized suspension culture: the rotating-wall vessel. Am J Physiol Renal Physiol 281:F12–F25

    Article  CAS  PubMed  Google Scholar 

  • Hammond TG et al (2013) Effects of microgravity on the virulence of Listeria monocytogenes, Enterococcus faecalis, Candida albicans, and methicillin-resistant Staphylococcus aureus. Astrobiology 13:1081–1090

    Article  CAS  PubMed  ADS  Google Scholar 

  • Huang B et al (2006) Distribution of 19 major virulence genes in Legionella pneumophila serogroup 1 isolates from patients and water in Queensland, Australia. J Med Microbiol 55:993–997

    Article  CAS  PubMed  ADS  Google Scholar 

  • Ichijo T, Yamaguchi N, Tanigaki F, Shirakawa M, Nasu M (2016) Four-year bacterial monitoring in the International Space Station—Japanese Experiment Module “Kibo” with culture-independent approach. Npj Microgravity 2:1–6

    Article  Google Scholar 

  • Jacobi S, Schade Rd, Heuner K (2004) Characterization of the alternative sigma factor σ54 and the transcriptional regulator FleQ of Legionella pneumophila, which are both involved in the regulation cascade of flagellar gene expression. J Bacteriol 186:2540–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalpana D, Im C, Lee YS (2016) Comparative growth, cross stress resistance, transcriptomics of Streptococcus pyogenes cultured under low shear modeled microgravity and normal gravity. Saudi J Biol Sci 23:24–33

    Article  CAS  PubMed  Google Scholar 

  • Kim HW, Rhee MS (2016) Influence of low-shear modeled microgravity on heat resistance, membrane fatty acid composition, and heat stress-related gene expression in Escherichia coli O157: H7 ATCC 35150, ATCC 43889, ATCC 43890, and ATCC 43895. Appl Environ Microbiol 82:2893–2901

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lawal A, Jejelowo OA, Rosenzweig JA (2010) The effects of low-shear mechanical stress on Yersinia pestis virulence. Astrobiology 10:881–888

    Article  PubMed  ADS  Google Scholar 

  • Liang J, Cameron G, Faucher SP (2023) Development of heat-shock resistance in Legionella pneumophila modeled by experimental evolution. Appl Environ Microbiol 89:e00666-e1623

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loza-Correa M et al (2014) The Legionella pneumophila kai operon is implicated in stress response and confers fitness in competitive environments. Environ Microbiol 16:359–381

    Article  CAS  PubMed  Google Scholar 

  • Lu J et al (2013) Legionella pneumophila transcriptional response following exposure to CuO nanoparticles. Appl Environ Microbiol 79:2713–2720

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lynch D, Fieser N, Glöggler K, Forsbach-Birk V, Marre R (2003) The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219:241–248

    Article  CAS  PubMed  Google Scholar 

  • McHugh SL, Yamamoto Y, Klein TW, Friedman H (2000) Murine macrophages differentially produce proinflammatory cytokines after infection with virulent vs. avirulent Legionella pneumophila. J Leukoc Biol 67:863–868

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Kubori T (2011) Type IVB secretion systems of Legionella and other Gram-negative bacteria. Front Microbiol 2:136

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagai H, Kagan JC, Zhu X, Kahn RA, Roy CR (2002) A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–682

    Article  CAS  PubMed  ADS  Google Scholar 

  • Newton HJ et al (2008) Significant role for ladC in initiation of Legionella pneumophila infection. Infect Immun 76:3075–3085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngwaga T, Hydock AJ, Ganesan S, Shames SR (2019) Potentiation of cytokine-mediated restriction of Legionella intracellular replication by a Dot/Icm-translocated effector. J Bacteriol 201:e00755-e1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL (2004) Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68:345–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ott C, Bruce R, Pierson D (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47:133–136

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rosado H, Doyle M, Hinds J, Taylor PW (2010) Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus. Acta Astronaut 66:408–413

    Article  CAS  ADS  Google Scholar 

  • Royce LA, Liu P, Stebbins MJ, Hanson BC, Jarboe LRJAm, biotechnology, (2013) The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol 97:8317–8327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santic M, Asare R, Doric M, Abu Kwaik Y (2007) Host-dependent trigger of caspases and apoptosis by Legionella pneumophila. Infect Immun 75:2903–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. In. MIDI technical note 101. Newark, DE: MIDI inc, pp 1–7

  • Schwarz RP, Wolf DA (1991) Rotating bio-reactor cell culture apparatus. In. Google Patents

  • Sheet S, Sathishkumar Y, Choi M-S, Lee YS (2019) Insight into Pseudomonas aeruginosa pyocyanin production under low-shear modeled microgravity. Bioprocess Biosyst Eng 42:267–277

    Article  CAS  PubMed  Google Scholar 

  • Sheet S, Yesupatham S, Ghosh K, Choi M-S, Shim KS, Lee YS (2020) Modulatory effect of low-shear modeled microgravity on stress resistance, membrane lipid composition, virulence, and relevant gene expression in the food-borne pathogen Listeria monocytogenes. Enzyme Microb Technol 133:109440

    Article  CAS  PubMed  Google Scholar 

  • Song H-S et al (2021) Increased antibiotic resistance of methicillin-resistant Staphylococcus aureus USA300 Δpsm mutants and a complementation study of Δpsm mutants using synthetic phenol-soluble modulins. J Microbiol Biotechnol 31:115

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wilkinson BJ, Standiford TJ, Akinbi HT, O’Riordan MXD (2012) Fatty acids regulate stress resistance and virulence factor production for Listeria monocytogenes. J Bacteriol 194:5274–5284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland MC, Nguyen TL, Tseng V, Vogel JP (2012) The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates. PLoS Pathog 8:e1002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor GR, Konstantinova I, Sonnenfeld G, Jennings R (1997) Changes in the immune system during and after spaceflight. Adv Space Biol Med 6:1–32

    Article  CAS  PubMed  Google Scholar 

  • Vandersmissen L, De Buck E, Saels V, Coil DA, Anné J (2010) A Legionella pneumophila collagen-like protein encoded by a gene with a variable number of tandem repeats is involved in the adherence and invasion of host cells. FEMS Microbiol Lett 306:168–176

    Article  CAS  PubMed  Google Scholar 

  • Verdon J et al (2011) Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide. Biochim Biophys Acta-Biomembranes 1808:1146–1153

    Article  CAS  Google Scholar 

  • Vogel JP, Andrews HL, Wong SK, Isberg RR (1998) Conjugative transfer by the virulence system of Legionella pneumophila. Science 279:873–876

    Article  CAS  PubMed  ADS  Google Scholar 

  • Vukanti R, Mintz E, Leff L (2008) Changes in gene expression of E. coli under conditions of modeled reduced gravity. Microgravity Sci Technol 20:41–57

    Article  CAS  ADS  Google Scholar 

  • Wilson J et al (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci 104:16299–16304

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yang Y, Khoo WJ, Zheng Q, Chung H-J, Yuk H-G (2014) Growth temperature alters Salmonella Enteritidis heat/acid resistance, membrane lipid composition and stress/virulence related gene expression. Int J Food Microbiol 172:102–109

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q-Y (2015) Legionella pathogenesis and virulence factors. Ann Clin Lab Res 3:15

    Google Scholar 

Download references

Acknowledgements

This study was supported by the funds of Jeonbuk National University 2019, Republic of Korea and we acknowledge the Center for University-wide Research Facilities (CURF) of Jeonbuk National University for helping in SEM images.

Funding

This research was supported by Buan RIS Resource Project (Grand no. R0001102) and the funds of Jeonbuk National University.

Author information

Authors and Affiliations

Authors

Contributions

SS and YSL designed research, SS and SA performed the experiments; SS, SA along with YS analyzed data; SS and SA wrote the draft paper; SS, SA, YS and YSL revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yang Soo Lee.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Ran Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

203_2023_3753_MOESM1_ESM.tif

Supplementary file1 represents the growth curve of L. pneumophila over a 24 h period in BYE broth at 37 °C (~ 90% relative humidity) under NG and LSMMG culture conditions. NG normal gravity; LSMMG Low sheared modeled micro gravity (TIF 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheet, S., Sathishkumar, Y., Acharya, S. et al. Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Arch Microbiol 206, 87 (2024). https://doi.org/10.1007/s00203-023-03753-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03753-z

Keywords

Navigation