Skip to main content
Log in

Genomic insight for algicidal activity in Rhizobium strain AQ_MP

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Occurrence of Harmful Algal Blooms (HABs) creates a threat to aquatic ecosystem affecting the existing flora and fauna. Hence, the mitigation of HABs through an eco-friendly approach remains a challenge for environmentalists. The present study provides the genomic insights of Rhizobium strain AQ_MP, an environmental isolate that showed the capability of degrading Microcystis aeruginosa (Cyanobacteria) through lytic mechanisms. Genome sequence analysis of Rhizobium strain AQ_MP unraveled the algal lytic features and toxin degradative pathways in it. Functional genes of CAZymes such as glycosyltransferases (GT), glycoside hydrolases (GH), polysaccharide lyases (PL) which supports algal polysaccharide degradation (lysis) were present in Rhizobium strain AQ_MP. Genome analysis also clarified the presence of the glutathione metabolic pathway, which is the biological detoxification pathway responsible for toxin degradation. The conserved region mlrC, a microcystin toxin-degrading gene was also annotated in the genome. The study illustrated that Rhizobium strain AQ_MP harbored a wide range of mechanisms for the lysis of Microcystis aeruginosa cells and its toxin degradation. In future, this study finds promiscuity for employing Rhizobium strain AQ_MP species for bioremediation, based on its physiological and genomic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ale MT, Mikkelsen JD, Meyer AS (2011) Important determinants for fucoidan bioactivity: a critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar Drugs 9(10):2106–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaver JR, Manis EE, Loftin KA, Graham JL, Pollard AI, Mitchell RM (2014) Land use patterns, ecoregion, and microcystin relationships in US lakes and reservoirs: a preliminary evaluation. Harmful Algae 36:57–62

    Article  CAS  Google Scholar 

  • Brand LE (1991) Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnol Oceanogr 36(8):1756–1771

  • Bohra V, Dafale NA, Purohit HJ (2019a) Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach. Arch Microbiol 201(10):1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Bohra V, Tikariha H, Dafale NA (2019b) Genomically defined Paenibacillus polymyxa ND24 for efficient cellulase production utilizing sugarcane bagasse as a substrate. Appl Biochem Biotechnol 187(1):266–281

    Article  CAS  PubMed  Google Scholar 

  • Bourne DG, Jones GJ, Blakeley RL, Jones A, Negri AP, Riddles P (1996) Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl Environ Microbiol 62(11):4086–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “The CyanoHABs.” Hum Ecol Risk Assess Int J 7(5):1393–1407

    Article  Google Scholar 

  • Corbel S, Mougin C, Bouaïcha N (2014) Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere 96:1–15

    Article  CAS  PubMed  Google Scholar 

  • Dakhama A, De la Noüe J, Lavoie MC (1993) Isolation and identification of antialgal substances produced by Pseudomonas aeruginosa. J Appl Phycol 5(3):297–306

    Article  CAS  Google Scholar 

  • Demuez M, González-Fernández C, Ballesteros M (2015) Algicidal microorganisms and secreted algicides: new tools to induce microalgal cell disruption. Biotechnol Adv 33(8):1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Chang HY, Dosztányi Z, El-Gebali S, Fraser M, Gough J (2017) InterPro in 2017—beyond protein family and domain annotations. Nucleic Acids Res 45(D1):D190–D199

  • Goldberg J, Huang HB, Kwon YG, Greengard P, Nairn AC, Kuriyan J (1995) Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Nature 376(6543):745–753

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Ann Rev Microbiol 48(1):743–772

    Article  CAS  PubMed  Google Scholar 

  • Gumbo JR, Cloete TE (2011) The mechanism of Microcystis aeruginosa death upon exposure to Bacillus mycoides. Phys Chem Earth Parts A/b/c 36(14–15):881–886

    Article  Google Scholar 

  • Gupta S, Pawar SB (2018) Mixotrophic cultivation of microalgae to enhance the quality of lipid for biodiesel application: effects of scale of cultivation and light spectrum on reduction of α-linolenic acid. Bioprocess Biosyst Eng 41(4):531–542

    Article  CAS  PubMed  Google Scholar 

  • Helbling EW, Villafañe V, Holm‐Hansen O (1991) Effect of iron on productivity and size distribution of Antarctic phytoplankton. Limnol Oceanogr 36(8):1879–1885

    Article  CAS  Google Scholar 

  • Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290):908–912

    Article  CAS  PubMed  Google Scholar 

  • Imai A, Fukushima T, Matsushige K (1999) Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Can J Fish Aquat Sci 56(10):1929–1937

    Article  CAS  Google Scholar 

  • Jiang X, Gao G, Zhang L, Tang X, Shao K, Hu Y, Cai J (2020) Role of algal accumulations on the partitioning between N2 production and dissimilatory nitrate reduction to ammonium in eutrophic lakes. Water Res 183:16075

    Article  CAS  Google Scholar 

  • Jiang Y, Shao J, Wu X, Xu Y, Li R (2011) Active and silent members in the mlr gene cluster of a microcystin-degrading bacterium isolated from Lake Taihu, China. FEMS Microbiol Lett 322(2):108–114

    Article  CAS  PubMed  Google Scholar 

  • Kim JD, Han MS (2003) Identification of alga-lytic bacterium AK-07 and its enzyme activities associated with degradability of cyanobacterium Anabaena cylindrica. Korean J Ecol Environ 36(2):108–116

    Article  Google Scholar 

  • Kim M, Shin B, Lee J, Park HY, Park W (2019) Culture-independent and culture-dependent analyses of the bacterial community in the phycosphere of cyanobloom-forming Microcystis aeruginosa. Sci Rep 9(1):1–13

    Article  Google Scholar 

  • Lampert W (1987) Laboratory studies on zooplankton-cyanobacteria interactions. NZ J Mar Freshwat Res 21(3):483–490

    Article  Google Scholar 

  • Lance E, Petit A, Sanchez W, Paty C, Gerard C, Bormans M (2014) Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. Harmful Algae 31:9–17

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Kim YO, Park SC, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66(2):1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Hrmova M, Burton RA, Lahnstein J, Fincher GB (2003) Bifunctional family 3 glycoside hydrolases from barley with α-l-arabinofuranosidase and β-d-xylosidase activity characterization, primary structures, and cooh-terminal processing. J Biol Chem 278(7):5377–5387

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Geng M, Liu X, Tan J, Yang H (2016) On the control of Microcystis aeruginosa and Synechococccus species using an algicidal bacterium, Stenotrophomonas F6, and its algicidal compounds cyclo-(Gly-Pro) and hydroquinone. J Appl Phycol 28(1):345–355

    Article  CAS  Google Scholar 

  • Liu ZZ, Zhu JP, Li M, Xue QQ, Zeng Y, Wang ZP (2014) Effects of freshwater bacterial siderophore on Microcystis and Anabaena. Biol Control 78:42–48

    Article  Google Scholar 

  • Manahan SE (2003) Toxicological chemistry and biochemistry, 3rd ed. CRC Press, Boca Raton, pp 142–153

  • Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, Huettel B, Stüber K, Reinhardt R, Harder J, Glöckner FO (2013) The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol 79(21):6813–6822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater S, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res Part A Oceanogr Res Pap 36(5):649–680

    Article  CAS  Google Scholar 

  • Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang HY, El-Gebali S, Fraser MI, Gough J (2019) InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res 47(D1):D351–D360

    Article  CAS  PubMed  Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127(2):529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42(D1):D206–D214

    Article  CAS  PubMed  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409(10):1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Pal M, Pal S, Qureshi A, Sangolkar LN (2018) Perspective of cyanobacterial harmful algal bloom (HAB) mitigation: Microcystis toxin degradation by bacterial consortia. Indian J Exp Biol 56(07):511–518

  • Pal M, Yesankar PJ, Dwivedi A, Qureshi A (2020) Biotic control of harmful algal blooms (HABs): a brief review. J Environ Manag 268:110687

    Article  CAS  Google Scholar 

  • Park HD, Sasaki Y, Maruyama T, Yanagisawa E, Hiraishi A, Kato K (2001) Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol Int J 16(4):337–343

    Article  CAS  Google Scholar 

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8(5):1650–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rapala J, Berg KA, Lyra C, Niemi RM, Manz W, Suomalainen S, Paulin L, Lahti K (2005) Paucibacter toxinivorans gen. nov., sp. Nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin. Int J Syst Evol Microbiol 55(4):1563–1568

    Article  CAS  PubMed  Google Scholar 

  • Rinehart KL, Namikoshi M, Choi BW (1994) Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6(2):159–176

    Article  CAS  Google Scholar 

  • Sangolkar LN, Maske SS, Muthal PL, Kashyap SM, Chakrabarti T (2009) Isolation and characterization of microcystin producing Microcystis from a Central Indian water bloom. Harmful Algae 8(5):674–684

    Article  CAS  Google Scholar 

  • Schmidt JR, Wilhelm SW, Boyer GL (2014) The fate of microcystins in the environment and challenges for monitoring. Toxins 6(12):3354–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sies H, Wahlländer A, Waydhas C, Soboll S, Häberle D (1980) Functions of intracellular glutathione in hepatic hydroperoxide and drug metabolism and the role of extracellular glutathione. Adv Enzyme Regul 18:303–320

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan VB, Rajamohan G (2020) Comparative genome analysis and characterization of a MDR Klebsiella variicola. Genomics 112(5):3179–3190

  • Srivastava S, Dafale NA, Purohit HJ (2020) Functional genomics assessment of lytic polysaccharide mono-oxygenase with glycoside hydrolases in Paenibacillus dendritiformis CRN18. Int J Biol Macromol 164:3729–3738

    Article  CAS  PubMed  Google Scholar 

  • Taylor LE, Henrissat B, Coutinho PM, Ekborg NA, Hutcheson SW, Weiner RM (2006) Complete cellulase system in the marine bacterium Saccharophagus degradans strain 2–40T. J Bacteriol 188(11):3849–3861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tikariha H, Purohit HJ (2019) Assembling a genome for novel nitrogen-fixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics 111(6):1824–1830

    Article  CAS  PubMed  Google Scholar 

  • Tikariha H, Pal RR, Qureshi A, Kapley A, Purohit HJ (2016) In silico analysis for prediction of degradative capacity of Pseudomonas putida SF1. Gene 591(2):382–392

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wu J, Jian S, Yang G, Hu B, Wen C (2018) Microcystin induction small Maf protein involve in transcriptional regulation of GST from freshwater mussel Cristaria plicata. Gene 660:51–61

    Article  CAS  PubMed  Google Scholar 

  • Wehr JD, Sheath RG, Kociolek JP (eds) (2015) Freshwater algae of North America: ecology and classification. Elsevier

  • Weiner RM, Taylor II LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2–40 T. PLoS Genet 4(5):e1000087

  • Wells ML, Price NM, Bruland KW (1994) Iron limitation and the cyanobacterium Synechococcus in equatorial Pacific waters. Limnol Oceanogr 39(6):1481–1486

    Article  CAS  Google Scholar 

  • Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, Harder J, Becher D, Schweder T, Glöckner FO, Amann RI (2015) Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J 9(6):1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Maeda H, Yoshikawa T, Zhou GQ (2012) Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Sci Eng 5(4):375–382

    CAS  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Yu Z, Huang Q, Xiao X, Wang X, Zhang F, Wang X, Liu Y, Hu C (2011a) Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica 41(1):70–77

    Article  CAS  Google Scholar 

  • Zhang J, Lu Q, Ding Q, Yin L, Pu Y (2017) A novel and native microcystin-degrading bacterium of Sphingopyxis sp. isolated from lake Taihu. Int J Environ Res Public Health 14(10):1187

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang ML, Yan H, Pan G (2011b) Microbial degradation of microcystin-LR by Ralstonia solanacearum. Environ Technol 32(15):1779–1787

    Article  CAS  Google Scholar 

  • Zhu Y, Chen P, Bao Y, Men Y, Zeng Y, Yang J, Sun J, Sun Y (2016) Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation. Sci Rep 6(1):1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Director, CSIR-NEERI (KRC No: CSIR-NEERI/KRC/2020/Nov/EBGD/4), for providing all the necessary infrastructure required for the experimentation. The authors also thank DBT (BT/PR16149/NER/95/85/2015 dated 19/01/2017) for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asifa Qureshi.

Ethics declarations

Conflict of interest

All the authors have mutually agreed to submit the manuscript to this journal and declare no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4942 KB)

Supplementary file2 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, M., Purohit, H.J. & Qureshi, A. Genomic insight for algicidal activity in Rhizobium strain AQ_MP. Arch Microbiol 203, 5193–5203 (2021). https://doi.org/10.1007/s00203-021-02496-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02496-z

Keywords

Navigation