Skip to main content
Log in

Streptomyces boluensis sp. nov., isolated from lake sediment

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A novel Gram-stain positive, aerobic, non-motile actinobacterium, designated strain YC537T, was isolated from lake sediment collected from Yenicaga Lake, Bolu, Turkey, and subjected to a polyphasic taxonomic approach. The organism had phylogenetic, chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces. 16S rRNA gene sequence analysis of strain YC537T showed that it is closely related to the type strain of Streptomyces ziwulingensis F22T (97.9% sequence similarity), Streptomyces tauricus JCM 4837 T (97.7%) and Streptomyces beijiangensis NBRC 100044 T (97.6%). The cell wall of the strain contained LL-diaminopimelic acid and the cell-wall sugars were glucose, galactose and ribose. The major phospholipids of strain YC537T were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The major cellular fatty acids were iso-C16:0, iso-C14:0, anteiso-C15:0 and iso-C15:0. Consequently, strain YC537T is considered to represent a novel species in the genus Streptomyces, for which the name Streptomyces boluensis sp. nov. is proposed. The type strain is YC537T (= KCTC 39750 T = DSM 102303 T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ay H, Nouioui I, del Carmen M-C, Klenk HP, Isik K, Cetin D, Sahin N (2018) Streptomyces sediminis sp. nov. isolated from crater lake sediment. Antonie Van Leeuwenhoek 111:493–500

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot (Tokyo) 58:1–26

    Article  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) Antismash 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47:W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, Madden TL, Matten WT, McGinnis SD, Merezhuk Y, Raytselis Y, Sayers EW, Tao T, Ye J, Zaretskaya I (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Res 41:W29–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466

    Article  CAS  PubMed  Google Scholar 

  • Collins MD (1985) Isoprenoid quinone analysis in classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 267–287

    Google Scholar 

  • Collins CH, Lyne PM, Grange JM, Falkinham III JO (eds) (2004) Collins and Lyne’s microbiological methods, 8th edn. Arnold, London, pp 97–98

    Google Scholar 

  • Duan YY, Ming H, Dong L, Yin YR, Zhang Y, Zhou EM, Liu L, Nie GX, Li WJ (2014) Streptomyces calidiresistens sp. nov., isolated from a hot spring sediment. Antonie Van Leeuwenhoek 106:189–196

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogeny: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Goodfellow M, Fiedler HP (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142

    Article  PubMed  Google Scholar 

  • Hasegawa T, Takizawa M, Tanida S (1983) A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322

    Article  CAS  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kämpfer P (2012) Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370, emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In: Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, Part B, vol 5, 2nd edn. Springer, New York, pp 1455–1517

  • Kämpfer P, Kroppenstedt RM (1996) Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005

    Article  Google Scholar 

  • Katz L, Baltz RH (2016) Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 43:155–176

    Article  CAS  PubMed  Google Scholar 

  • Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington

    Google Scholar 

  • Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  PubMed  Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Kroppenstedt RM (1982) Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 5:2359–2387

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2013) Platforms for antibiotic discovery. Nat Rev Drug Discov 12:371–387

    Article  CAS  PubMed  Google Scholar 

  • Lin YB, Wang XY, Wang TT, An SS, Shi P, Wei GH (2013) Streptomyces ziwulingensis sp. nov., isolated from grassland soil. Int J Syst Evol Microbiol 63:1545–1549

    Article  PubMed  Google Scholar 

  • Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–414

    Article  CAS  PubMed  Google Scholar 

  • Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Nash P, Krent MM (1991) Culture media. In: Balows A, Hauser WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 3rd edn. American Society for Microbiology, Washington, pp 1268–1270

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method. A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101., MIDI Inc, Newark

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Tatar D, Guven K, Spröer C, Klenk HP, Sahin N (2014) Streptomyces iconiensis sp. nov. and Streptomyces smyrnaeus sp. nov., two halotolerant actinomycetes isolated from a salt lake and saltern. Int J Syst Evol Microbiol 64:3126–3133

    Article  CAS  PubMed  Google Scholar 

  • van der Donk WA, Nair SK (2014) Structure and mechanism of lanthipeptide biosynthetic enzymes. Curr Opin Struct Biol 29:58–66

    Article  PubMed  Google Scholar 

  • Veyisoglu A, Sahin N (2014) Streptomyces hoynatensis sp. nov., isolated from deep marine sediment. Int J Syst Evol Microbiol 64:819–826

    Article  CAS  PubMed  Google Scholar 

  • Waksman SA (1961) The actinomycetes, classification, identification and description of genera and species, vol 2. Williams & Wilkins, Baltimore

    Google Scholar 

  • Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N, Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H, Stevens RL (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acid Res 45:D535–D542

    Article  CAS  PubMed  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Xia Z-F, Ruan J-S, Huang Y, Zhang L-L (2013) Streptomyces aidingensis sp. nov., an actinomycete isolated from lake sediment. Int J Syst Evol Microbiol 63:3204–3208

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JW, Guo LF, Liu CX, Bai L, Han CY, Li LJ, Xiang WS, Wang XJ (2015) Streptomyces tyrosinilyticus sp. nov. a novel actinomycete isolated from river sediment. Int J Syst Evol Microbiol 65:3091–3096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Genome sequencing was provided by MicrobesNG (https://www.microbesng.uk). We gratefully acknowledges Cengiz Nigiz from Ondokuz Mayis University for help to us in obtaining the sediment samples.

Funding

This research was supported by Amasya University (AU), project no. FMB-BAP 15-0147.

Author information

Authors and Affiliations

Authors

Contributions

NS and OI designed the study. AT, AV and HS performed the laboratory experiments. KG contributed to the fatty acids determination. DC contributed to electron microscopy. NS and AV wrote the paper. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Onder Idil or Nevzat Sahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

203_2020_1901_MOESM1_ESM.jpg

Fig. S1. Scanning electron micrograph of strain YC537T grow on oatmeal agar (ISP3) medium at 28 °C for 32 days. Bar, 5 μm 1 (JPG 92 kb)

203_2020_1901_MOESM2_ESM.jpg

Fig. S2. The phospholipids of strain YC537. Diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphoglycolipid (PGL), three unidentified aminolipids (AL) and two unidentified phospholipids (PL). Solvent used were CHCl3: CH3OH: distilled water (65:25:4) for the first run and CHCl3: glacial acetic acid: CH3OH: distilled water (80:12:15:4) for the second run (JPG 220 kb)

Supplementary file3 (DOCX 112 kb)

Supplementary file4 (DOC 81 kb)

Supplementary file5 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokatli, A., Idil, O., Veyisoglu, A. et al. Streptomyces boluensis sp. nov., isolated from lake sediment. Arch Microbiol 202, 2303–2309 (2020). https://doi.org/10.1007/s00203-020-01901-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-01901-3

Keywords

Navigation