Skip to main content
Log in

Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Some unicellular N2-fixing cyanobacteria have recently been found to lack a functional photosystem II of photosynthesis. Such organisms, provisionally termed UCYN-A, of the oceanic picoplanktion are major contributors to the global marine N-input by N2-fixation. Since their photosystem II is inactive, they can perform N2-fixation during the day. UCYN-A organisms cannot be cultivated as yet. Their genomic analysis indicates that they lack genes coding for enzymes of the Calvin cycle, the tricarboxylic acid cycle and for the biosynthesis of several amino acids. The carbon source in the ocean that allows them to thrive in such high abundance has not been identified. Their genomic analysis implies that they metabolize organic carbon by a new mode of life. These unicellular N2-fixing cyanobacteria of the oceanic picoplankton are evolutionarily related to spheroid bodies present in diatoms of the family Epithemiaceae, such as Rhopalodia gibba. More recently, spheroid bodies were ultimately proven to be related to cyanobacteria and to express nitrogenase. They have been reported to be completely inactive in all photosynthetic reactions despite the presence of thylakoids. Sequence data show that R. gibba and its spheroid bodies are an evolutionarily young symbiosis that might serve as a model system to unravel early events in the evolution of chloroplasts. The cell metabolism of UCYN-A and the spheroid bodies may be related to that of the acetate photoassimilating green alga Chlamydobotrys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  CAS  PubMed  Google Scholar 

  • Bertilsson S, Jones JBJ (2003) Supply of organic matter to aquatic ecosystems. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic Press, New York, pp 2–24

    Google Scholar 

  • Bertilsson S, Berglund O, Pullin MJ, Chisholm SW (2005) Release of dissolved organic matter by Prochlorococcus. Vie et Millieu 55:225–231

    Google Scholar 

  • Church MJ, Björkman KM, Karl DM, Saito MA, Zehr JP (2008) Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limn Oceanogr 53:63–77

    CAS  Google Scholar 

  • Church MJ, Mahaffey C, Letelier RM et al (2009) Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem Cycles 23:GB2020. doi:2010.1029/2008GB003418.002009

    Article  Google Scholar 

  • DeLong EF (2010) Interesting things come up in small packages. Genome Biol 11:R118

    Article  Google Scholar 

  • Diez B, Bergman B, El-Shehawy R (2008) Marine diazotrophic cyanobacteria: Out of the blue. Plant Biotechnol 25:221–225

    Google Scholar 

  • Drum RW, Pankratz S (1965) Fine structure of an unusual cytoplasmic inclusion in the diatom genus Rhopalodia. Protoplasma 60:141–149

    Article  Google Scholar 

  • Falcon LI, Carpenter EF, Cyprian OF, Bergman B, Capone DG (2004) N2 fixation by unicellular bacterioplankton from the Atlantic and Pacific Oceans: phylogeny and in situ rates. Appl Environ Microbiol 70:765–770

    Article  CAS  PubMed  Google Scholar 

  • Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340–373

    CAS  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J et al (2010) The Pfam protein families database. Nucleic Acids Res Database Issue 38:D211–D222

    Article  CAS  Google Scholar 

  • Floener L (1982) Physiologische und biochemische Untersuchungen an dem Cyanellen enthaltenden Flagellat Cyanophora paradoxa und an Rhopalodia gibba, einer Diatomee mit blau-grünen Einschlüssen. Thesis, The University of Cologne, Germany

  • Floener L, Bothe H (1980) Nitrogen fixation in Rhopalodia gibba; a diatom containing blue-greenish inclusions symbiotically. In: Schwemmler W, Schenk HEA (eds) Endocytobiology, endosymbiosis and cell biology. Walter de Gruyter & Co, Berlin, pp 541–552

    Google Scholar 

  • Floener L, Danneberg G, Bothe H (1982) Metabolic activities in Cyanophora paradoxa and its cyanelles, I. The enzymes of assimilatory nitrate reduction. Planta 156:70–77

    Article  CAS  Google Scholar 

  • Fritsch FE (1945) The structure and reproduction of algae II. Macmillan Co., New York

    Google Scholar 

  • Gallon JR (2001) N2 fixation in phototrophs: adaptation to a specialized way of life. Plant Soil 230:39–48

    Article  CAS  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present and future. Biogeochem 70:153–226

    Article  CAS  Google Scholar 

  • Geitler L (1977) Zur Entwicklungsgeschichte der Epithemiaceen Epithemia, Rhopalodia und Denticula (Diatomophyceae) und ihre vermutlich symbiotischen Sphäroidkörper. Plant Syst Evol 128:259–275

    Article  Google Scholar 

  • Goebel NL, Edwards CA, Carter BJ, Achilles KM, Zehr JP (2008) Growth and carbon content of three different sized diazotrophic cyanobacteria in the subtropical North Pacific. J Phycol 44:1212–1229

    Article  Google Scholar 

  • Golecki JR, Drews G (1982) Supramolecular organization and composition of membranes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria, Botanical monograph vol. 19. Blackwell, Oxford, pp 125–141

    Google Scholar 

  • Kitajima S, Furuya KFH, Takeda S, Kanda J (2009) Latidudinal distribution of diazotrophs and their nitrogen fixation in the tropical and subtropical western North Pacific. Linm Oceanogr 54:537–547

    CAS  Google Scholar 

  • Klebahn H (1896) Beiträge zur Kenntnis der Auxosporenbildung. I. Rhopalodia gibba. Pringsh Jahrb Wiss Bot 29:595–654

    Google Scholar 

  • Kneip C, Lockhart PJ, Voß C, Maier UG (2007) Nitrogen fixation in eukaryotes- new models for symbiosis. BMC Evol Biol 7(55)

  • Kneip C, Voß C, Lockhart PJ, Maier UG (2008) The cyanobacterial endosymbiont of the unicellular algae Rhopalodia gibba shows reductive genome evolution. BMC Evol Biol 8:1–8

    Article  Google Scholar 

  • Langlois RJ, Laroche J, Raab PA (2005) Diazotrophic diversity and distribution in the tropical and subtropical Atlantic ocean. Appl Environ Microbiol 71:7910–7919

    Article  CAS  PubMed  Google Scholar 

  • Löffelhardt W, Bohnert HJ, Bryant DA (1997) The cyanelles of Cyanophora paradoxa. Crit Rev Plant Sciences 16:393–413

    Google Scholar 

  • Mazard SL, Fuller NJ, Orcutt KM et al (2004) PCR analysis of the distribution of unicellular cyanobacterial diazotrophs in the Arabian Sea. Appl Environ Microbiol 70:7355–7364

    Article  CAS  PubMed  Google Scholar 

  • Mende D, Wiessner W (1983) Participation of photosystem II in regulation of photosynthetic electron transport in the green alga Chlamydobotrys stellata. Photobiochem Photobiophys 6:1–7

    CAS  Google Scholar 

  • Moisander PH, Beinert RA, Hewson I et al (2010) Unicellular cyanobacterial distributions broadens the oceanic N2 fixation domain. Science 327:1512–1514

    Article  CAS  PubMed  Google Scholar 

  • Nowack ECM, Melkonian M (2010) Endosymbiotic associations within protists. Phil Trans Roy Soc B 365:699–712

    Article  CAS  Google Scholar 

  • Prechtl J, Kneip C, Voss C, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481

    Article  CAS  PubMed  Google Scholar 

  • Pringsheim EG, Wiessner W (1960) Photo-assimilation of acetate by green organisms. Nature 188:919–921

    Article  CAS  Google Scholar 

  • Pringsheim EG, Wiessner W (1961) Ernährung und Stoffwechsel von Chlamydobotrys (Volvocales). Arch Mikrobiol 40:231–246

    Article  CAS  Google Scholar 

  • Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Prieto A, Bhattacharya D (2007) Phylogeny of nuclear-encoded plastid-targeted proteins supports an early divergence of glaucophytes within plantae. Mol Biol Evol 24:2358–2361

    Article  CAS  PubMed  Google Scholar 

  • Schmitz O, Gurke J, Bothe H (2001) Molecular evidence for the aerobic expression of nifJ, encoding pyruvate:ferredoxin oxidoreductase in cyanobacteria. FEMS Microbiol Lett 195:97–102

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Deichgräber G (1978) Development and ultrastructure of the marine, parasitic oomycete, Lagenisma coscinodisci Drebes (Lagenidiales). Arch Mikrobiol 166:133–139

    Google Scholar 

  • Schnepf E, Schlegel I, Hepperle D (2002) Petalomonas sphagnophila (Euglenophyta) and its endocytobiotic cyanobacteria: a unique form of symbioses. Phycologia 41:153–157

    Article  Google Scholar 

  • Schwalbach MS, Tripp HJ, Steindler L, Smith DP, Giovannoni SJ (2010) The presence of the glycolysis operon in SAR11 genomes is positively correlated with ocean productivity. Environ Microbiol 12:490–500

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ (2009) Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ Microbiol 11:1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Stal LJ, Zehr JP (2008) Cyanobacterial nitrogen fixation in the ocean: diversity, regulation and ecology. In: Herrero A, Flores E (eds) The cyanobacteria, molecular ecology, genomics, evolution). Caister Academic Press, Norfolk, U.K, pp 423–446

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK (2007) A fifth pathway of C-fixation. Science 318:1732–1733

    Article  CAS  PubMed  Google Scholar 

  • Tikhonovich IA, Provorov NA (2009) From plant-microbe interactions to symbiogenetics: a universal paradigm for the interspecies genetic integration. Annals Appl Biol 154:341–350

    Article  Google Scholar 

  • Trepel J, McDermott JE, Summerfield TC, Sherman LA (2009) Transcriptional analysis of the unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 grown under short day/night cycles. J Phycol 45:610–620

    Article  Google Scholar 

  • Tripp HJ, Bench SR, Turk KA et al (2010) Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature 464:90–94

    Article  CAS  PubMed  Google Scholar 

  • Turner S, Huang T-C, Chaw S-M (2001) Molecular phylogeny of nitrogen-fixing unicellular cyanobacteria. Bot Bull Acad Sin 42:181–186

    CAS  Google Scholar 

  • Wiessner W (1962) Kohlenstoffassimilation von Chlamydobotrys (Volvocales). Arch Mikrobiol 43:402–411

    Article  CAS  PubMed  Google Scholar 

  • Wiessner W, Gaffron H (1964) Role of photosynthesis in the light-induced assimilation of acetate by Chlamydobotrys. Nature 201:725–726

    Article  CAS  PubMed  Google Scholar 

  • Zeev EB, Yogev T, Man-Ahaoronovich D, Kress N, Herut B, Béjà O, Berman-Frank I (2008) Seasonal dynamics of the endosymbiotic, nitrogen-fixing cyanobacterium Richelia intracellularis in the eastern Mediterranean Sea. ISME J 2:911–923

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Mellon MT, Zani S (1998) New nitrogen-fixing microorganisms detected in oligotrophic oceans by amplification of nitrogenase (nifH) genes. Appl Environ Microbiol 64:3444–3450

    CAS  PubMed  Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ et al (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–638

    Article  CAS  PubMed  Google Scholar 

  • Zehr JP, Montoya JP, Jenkins BD et al (2007) Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limn Oceanograph 52:169–183

    Article  CAS  Google Scholar 

  • Zehr JP, Bench SR, Carter BJ et al (2008) Globally distributed uncultured oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kendra Turk for technical assistance. Research was supported by the Gordon and Betty Moore Foundation and the NSF Center for Microbial Oceanography Research and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bothe.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothe, H., Tripp, H.J. & Zehr, J.P. Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192, 783–790 (2010). https://doi.org/10.1007/s00203-010-0621-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0621-5

Keywords

Navigation