Skip to main content

Advertisement

Log in

Effect of osmotic stress on plant growth promoting Pseudomonas spp.

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study we isolated and screened drought tolerant Pseudomonas isolates from arid and semi arid crop production systems of India. Five isolates could tolerate osmotic stress up to −0.73 MPa and possessed multiple PGP properties such as P-solubilization, production of phytohormones (IAA, GA and cytokinin), siderophores, ammonia and HCN however under osmotic stress expression of PGP traits was low compared to non-stressed conditions. The strains were identified as Pseudomonas entomophila, Pseudomonas stutzeri, Pseudomonas putida, Pseudomonas syringae and Pseudomonas monteilli respectively on the basis of 16S rRNA gene sequence analysis. Osmotic stress affected growth pattern of all the isolates as indicated by increased mean generation time. An increase level of intracellular free amino acids, proline, total soluble sugars and exopolysaccharides was observed under osmotic stress suggesting bacterial response to applied stress. Further, strains GAP-P45 and GRFHYTP52 showing higher levels of EPS and osmolytes (amino acids and proline) accumulation under stress as compared to non-stress conditions, also exhibited higher expression of PGP traits under stress indicating a relationship between stress response and expression of PGP traits. We conclude that isolation and screening of indigenous, stress adaptable strains possessing PGP traits can be a method for selection of efficient stress tolerant PGPR strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali SKZ, Sandhya V, Minakshi G, Kishore N, Venkateswar Rao L, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soils 46:45–55

    Article  CAS  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas sp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Barbara JT, Wong T-Y (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationship: environmental and physiological advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RD, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2006) Phytohormone production by three strains of Bradyrhizobium japonicum, and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–258

    Article  CAS  PubMed  Google Scholar 

  • Brown CM, Stanley SO (1972) Environment-mediated changes in the cellular content of the “pool’ constituents and their associated changes in cell physiology. J Appl Chem Biotechnol 22:363–389

    Article  CAS  Google Scholar 

  • Burton K (1956) A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62:315–332

    CAS  PubMed  Google Scholar 

  • Chanway CP, Holl FB (1994) Growth of outplanted lodepole pine seedlings one year after inoculation with plant growth promoting rhizobacteria. For Sci 40:238–246

    Google Scholar 

  • Chen WP, Kuo TT (1993) A simple and rapid method for the preparation of Gram negative bacterial genomic DNA. Nucleic Acids Res 21:2260

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Sueldo RJ, Barassi CA (2004) Water relations and yield in Azospirillum- inoculated wheat exposed to drought in the field. Can J Bot 82:273–281

    Article  Google Scholar 

  • Crowe JH, Crowe LM (1986) Stabilization of membranes in anhydrobiotic organisms. In: Leopold AC (ed) Membranes, metabolism and dry organisms, 1st edn. Cornell University Press, Ithaca, pp 188–209

    Google Scholar 

  • Crowe JH, Crowe LM (1992) Membrane integrity in anhydrobiotic organisms: toward a mechanism for stabilizing dry cells. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life, 1st edn. Springer, Berlin, pp 87–103

    Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Mol Biol Rev 53:121–147

    CAS  Google Scholar 

  • Dell’ Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium resistance rhizobacteria. Soil Biol Biochem 40:74–84

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L) by application of plant growth promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Diamant S, Rosental D, Elyahu N, Goloubinoff P (2001) Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem 276:39586–39591

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric methods for determination of sugars of related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fett WF, Osman SF, Fishman ML, Siebles TS III (1986) Alginate production by plant pathogenic pseudomonads. Appl Environ Microbiol 52:466–473

    CAS  PubMed  Google Scholar 

  • Fett WF, Osman SF, Dunn MF (1989) Characterization of exopolysaccharides produced by plant associated fluorescent pseudomonads. Appl Environ Microbiol 55:579–583

    CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indol acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  Google Scholar 

  • Halverson LJ, Jones TM, Firestone MK (2000) Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Sci Soc Am J 64:1630–1637

    Article  CAS  Google Scholar 

  • Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57:645–648

    CAS  PubMed  Google Scholar 

  • Holbrook AA, Edge WJW, Baily F (1961) Spectrophotometric method for determination of gibberellic acid. Adv Chem Ser 28:159–167

    Article  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Stalely JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Horborne JB (1976) Phytochemical methods. Chapman and Hall, London, p 33

    Google Scholar 

  • Jackson MB (1993) Are plant hormones involved in root to shoot communication? Adv Bot Res 19:103–186

    Article  CAS  Google Scholar 

  • Kilbertus G, Proth J, Vervier B (1979) Effects de la dessiccation sur les bacteries Gram-negatives d’un sol. Soil Biol Biochem 11:109–114

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kogut M, Russell NJ (1987) Life at the limits: considerations on how bacteria can grow at extremes of temperature and pressure, or with high concentrations of ions and solutes. Sci Progr 71:381–399

    CAS  Google Scholar 

  • Lifshitz R, Kloepper JW, Scher FM, Tipping EM, Laliberte M (1986) Nitrogen-fixing pseudomonads isolated from roots of plants grown in the Canadian high arctic. Appl Enviro Microbiolol 51:251–255

    CAS  Google Scholar 

  • Marulanda A, Barae JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Porcel R, Barea JM, Azcón R (2007) Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species. Microb Ecol 54:543–552

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Barea J-M, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul. doi:10.1007/s00344-009-9079-6

    Google Scholar 

  • Measures JC (1975) Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257:398–400

    Article  CAS  PubMed  Google Scholar 

  • Mehta S, Nautiyal CS (2001) An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr Microbiol 43:51–56

    Article  CAS  PubMed  Google Scholar 

  • Moore S, Stein WH (1948) In: Colowick SP, Kaplan ND (eds) Methods enzymology. Academic press, New York, p 468

    Google Scholar 

  • Perrig D, Boiero ML, Masciarelli O, Penna C, Ruiz OA, Cassan F, Luna V (2007) Plant growth promoting compounds produced by two strains of Azospirillum brasilense, and implications for inoculant formation. Appl Microbiol Biotechnol 75:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed  Google Scholar 

  • Räsänen LA, Saijets S, Jokinen K, Lind-ström K (2004) Evaluation of the roles of two compatible solutes, glycine betaine and trehalose, for the Acacia senegalSinorhizobium symbiosis exposed to drought stress. Plant Soil 260:237–251

    Article  Google Scholar 

  • Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    CAS  PubMed  Google Scholar 

  • Ruíz-Lozano JM, Azcon R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp. from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    Article  Google Scholar 

  • Ryu C-M, Mohamed AF, Hu C-H, Munagala SR, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new, method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sandhya V, Ali SKZ, Minakshi G, Reddy G, Venkateswarlu B (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophore. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondria DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tempest DW, Meers JL, Brown CM (1970) Influence of environment on the content and composition of microbial free amino acid pools. J Gen Microbiol 64:171–185

    CAS  PubMed  Google Scholar 

  • Timmusk S (2003) Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Comprehansive summaries of Uppsala dissertations from the faculty of science and technology 908, Acta Universitatis Upsaliensis, Uppsala, p 40

  • Timmusk S, Wagner EGH (1999) The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thalianan gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microb Interact 12:951–959

    Article  CAS  Google Scholar 

  • Webb SJ (1965) Bound water in biological integrity. Charles C Thomas Publisher, Springfield

    Google Scholar 

  • Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Indian Council of Agricultural Research (ICAR), New Delhi for providing the financial assistance in the form of network project on Application of Microorganisms in Agriculture and Allied Sectors (AMAAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minakshi Grover.

Additional information

Communicated by Ursula Priefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandhya, V., Ali, S.Z., Venkateswarlu, B. et al. Effect of osmotic stress on plant growth promoting Pseudomonas spp.. Arch Microbiol 192, 867–876 (2010). https://doi.org/10.1007/s00203-010-0613-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0613-5

Keywords

Navigation