Skip to main content
Log in

Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The recombinant Bordetella pertussis CyaA pore-forming (CyaA-PF) fragment was previously shown to be expressed separately in Escherichia coli as a soluble precursor that can be in vivo palmitoylated to exert haemolytic activity. In this study, PCR-based mutagenesis was employed to investigate the contributions to haemolysis of five predicted helices within the N-terminal hydrophobic region of the CyaA-PF fragment. Single proline substitutions were made for alanine near the centre of each predicted helix as a means of disrupting local secondary structure. All mutant proteins were over-expressed in E. coli as a 126-kDa soluble protein at levels comparable to the wild-type. Marked reductions in haemolytic activity against sheep erythrocytes of mutants, A510P, A538P, A583P and A687P pertaining to the putative helices 1500–522, 2529–550, 3571–593 and 5678–698, respectively, were observed. However, a slight decrease in haemolytic activity was found for the proline replacement in the predicted helix 4602–627 (A616P). MALDI–TOF–MS and LC–MS–MS analyses verified the palmitoylation at Lys983 of all five mutants as identical to that of the CyaA-PF wild-type protein, indicating that toxin modification via this acylation was not affected by the mutations. Altogether, these results suggest that structural integrity of the predicted helices 1, 2, 3 and 5, but not helix 4, is important for haemolytic activity, particularly for the putative transmembrane helices 2 and 3 that might conceivably be involved in pore formation of the CyaA-PF fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC:

Adenylate cyclase

CyaA:

Adenylate cyclase-haemolysin toxin

CyaA-PF:

CyaA pore-forming

IPTG:

Isopropyl-β-d-thiogalactopyranoside

PCR:

Polymerase chain reaction

PMSF:

Phenylmethylsulfonylfluoride

RTX:

Repeat-in-toxin

SDS-PAGE:

Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

References

  • Angsuthanasombat C, Uawithya P, Leetachewa S, Pornwiroon W, Ounjai P, Kerdcharoen T, Kartzenmeier GR, Panyim S (2004) Bacillus thuringiensis Cry4A and Cry4B mosquito-larvicidal protein: homology based 3D model and implications for toxin activity. J Biochem Mol Biol 37:304–313

    PubMed  CAS  Google Scholar 

  • Barry EM, Weiss AA, Ehrmann IE, Gray MC, Hewlett EL, Goodwin MS (1991) Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaC, for activation. J Bacteriol 173:720–726

    PubMed  CAS  Google Scholar 

  • Basler M, Masin J, Osicka R, Sebo P (2006) Pore-forming and enzymatic activities of Bordetella pertussis adenylate cyclase toxin synergize in promoting lysis of monocytes. Infect Immun 74:2207–2214

    Article  PubMed  CAS  Google Scholar 

  • Basler M, Knapp O, Masin J, Fiser R, Maier E, Benz R, Sebo P, Osicka R (2007) Segments crucial for membrane translocation and pore-forming activity of Bordetella adenylate cyclase toxin. J Biol Chem 282:12419–12429

    Article  PubMed  CAS  Google Scholar 

  • Bauche C, Chenal A, Knapp O, Bodenreider C, Benz R, Chaffotte A, Ladant D (2006) Structural and functional characterization of an essential RTX subdomain of Bordetella pertussis adenylate cyclase toxin. J Biol Chem 281:16914–16926

    Article  PubMed  CAS  Google Scholar 

  • Bellalou J, Sakamoto H, Ladant D, Geoffroy C, Ullmann A (1990) Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun 58:3242–3247

    PubMed  CAS  Google Scholar 

  • Benz R, Maier E, Ladant D, Ullmann A, Sebo P (1994) Adenylate cyclase toxin (CyaA) of Bordetella pertussis: Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem 269:27231–27239

    PubMed  CAS  Google Scholar 

  • Braun P, von Heijne G (1999) The aromatic residues Trp and Phe have different effects on the positioning of a transmembrane helix in the microsomal membrane. Biochemistry 38:9778–9882

    Article  PubMed  CAS  Google Scholar 

  • Carbonetti NH, Artamonava GV, Andreasen C, Bushar N (2005) Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of Bordetella pertussis infection of the respiratory tract. Infect Immun 73:2698–2703

    Article  PubMed  CAS  Google Scholar 

  • Choe S, Bennett MJ, Fujii G, Curmi PM, Kantardjieff KA, Collier RJ, Eisenberg D (1992) The crystal structure of diphtheria toxin. Nature 357:216–222

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, von Heijne G (1994) TopPredII: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686

    PubMed  CAS  Google Scholar 

  • Dogovski C, Pi J, Pittard AJ (2003) Putative interhelical interactions within the PheP protein revealed by second-site suppressor analysis. J Bacteriol 185:6225–6232

    Article  PubMed  CAS  Google Scholar 

  • Drechsler A, Potrich C, Sabo JK, Frisanco M, Guella G, Dalla Serra M, Anderluh G, Separovic F, Norton RS (2006) Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II. Biochemistry 45:1818–1828

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann IE, Gray MC, Gordon VM, Gray LS, Hewlett EL (1991) Hemolytic activity of adenylate cyclase toxin from Bordetella pertussis. FEBS Lett 278:79–83

    Article  PubMed  CAS  Google Scholar 

  • Ehrmann IE, Weiss AA, Goodwin MS, Gray MC, Barry E, Hewlett EL (1992) Enzymatic activity of adenylate cyclase toxin from Bordetella pertussis is not required for hemolysis. FEBS Lett 304:51–56

    Article  PubMed  CAS  Google Scholar 

  • Eilers M, Shekar SC, Shieh T, Smith SO, Fleming PJ (2000) Internal packing of helical membrane proteins. Proc Natl Acad Sci USA 97:5796–5801

    Article  PubMed  CAS  Google Scholar 

  • Fiser R, Masin J, Basler M, Krusek J, Spulakova V, Konopasek I, Sebo P (2006) Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 282:2808–2820

    Article  PubMed  CAS  Google Scholar 

  • Glover T, Mitchell K (2002) Testing the difference between two means of independent samples. In: Glover T, Mitchell K (eds) An Introduction to Biostatistics. McGraw-Hill, New York, pp 163–168

    Google Scholar 

  • Gueirard P, Druilhe A, Pretolani M, Guiso N (1998) Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 66:1718–1725

    PubMed  CAS  Google Scholar 

  • Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardy-Castagnoli P, Guiso N, Ladant D, Leclerc C (2001) The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18). J Exp Med 193:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL (1994) Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science 266:433–435

    Article  PubMed  CAS  Google Scholar 

  • Hewlett EL, Gordon VM, MaCaffery JD, Sutherland WM, Gray MC (1989) Adenylate cyclase toxin from Bordetella pertussis: identification and purification of the holotoxin molecule. J Biol Chem 264:19379–19384

    PubMed  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) TMbase—a database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374:166

    Google Scholar 

  • Javadpour MM, Eilers M, Groesbeek M, Smith SO (1999) Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J 77:1609–1618

    PubMed  CAS  Google Scholar 

  • Knapp O, Maier E, Polleichtner G, Masin J, Sebo P, Benz R (2003) Channel formation in model membranes by the adenylate cyclase toxin of Bordetella pertussis: effect of calcium. Biochemistry 42:8077–8084

    Article  PubMed  CAS  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  • Malovrh P, Viero G, Serra MD, Podlesek Z, Lakey JH, Macek P, Menestrina G, Anderluh G (2003) A novel mechanism of pore formation: membrane penetration by the N-terminal amphipathic region of equinatoxin. J Biol Chem 278:22678–22685

    Article  PubMed  CAS  Google Scholar 

  • Osickova A, Osicka R, Maier E, Benz R, Sebo P (1999) An amphipathic alpha-helix including glutamates 509 and 516 is crucial for membrane translocation of adenylate cyclase toxin and modulates formation and cation selectivity of its membrane channels. J Biol Chem 274:37644–37650

    PubMed  CAS  Google Scholar 

  • Parker MW, Feil SC (2005) Pore-forming protein toxins: from structure to function. Prog Biophys Mol Biol 88:91–142

    Article  PubMed  CAS  Google Scholar 

  • Parker MW, Pattus F, Tucker AD, Tsernoglou D (1989) Structure of the membrane-pore-forming fragment of colicin A. Nature 337:93–96

    Article  PubMed  CAS  Google Scholar 

  • Powthongchin B, Angsuthanasombat C (2008) High level of soluble expression in Escherichia coli and characterisation of the CyaA-pore forming fragment from a Bordetella pertussis Thai clinical isolate. Arch Microbiol 189:169–174

    Article  PubMed  CAS  Google Scholar 

  • Rose T, Sebo P, Bellalou J, Ladant D (1995) Interaction of calcium with Bordetella pertussis adenylate cyclase toxin. Characterization of multiple calcium-binding sites and calcium-induced conformational changes. J Biol Chem 270:26370–26376

    Article  PubMed  CAS  Google Scholar 

  • Rost B, Fariselli P, Casadio R (1996) Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci 5:1704–1718

    Article  PubMed  CAS  Google Scholar 

  • Russ WP, Engelman DM (2000) The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 296:911–919

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Bellalou J, Sebo P, Ladant D (1992) Bordetella pertussis adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J Biol Chem 267:13598–13602

    PubMed  CAS  Google Scholar 

  • Sebo P, Ladant D (1993) Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the Escherichia coli alpha-haemolysin translocator. Mol Microbiol 9:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Tilley SJ, Saibil HR (2006) The mechanism of pore formation by bacterial toxins. Curr Opin Struct Biol 16:230–236

    Article  PubMed  CAS  Google Scholar 

  • Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  PubMed  Google Scholar 

  • Vojtova J, Kofronova O, Sebo P, Benada O (2006) Bordetella adenylate cyclase toxin induces a cascade of morphological changes of sheep erythrocytes and localizes into clusters in erythrocyte membranes. Microsc Res Tech 69:119–129

    Article  PubMed  CAS  Google Scholar 

  • van der Wel PCA, Strandberg E, Killian JA, Koeppe RE (2002) Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR. Biophys J 83:1479–1488

    PubMed  Google Scholar 

  • Welch RA (1991) Pore-forming cytolysins of Gram-negative bacteria. Mol Microbiol 5:521–528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Proteomic service center, Bio Service Unit, BIOTEC, Thailand for MALDI–TOF–MS and LC–MS–MS analyses. B.P. was financially supported in part by Faculty of Graduate Studies, Mahidol University and Faculty of Pharmacy, Silpakorn University. This work was funded by the Thailand Research Fund in cooperation with the Commission of Higher Education (to C.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanan Angsuthanasombat.

Additional information

Communicated by Axel Brakhage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powthongchin, B., Angsuthanasombat, C. Effects on haemolytic activity of single proline substitutions in the Bordetella pertussis CyaA pore-forming fragment. Arch Microbiol 191, 1–9 (2009). https://doi.org/10.1007/s00203-008-0421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0421-3

Keywords

Navigation