Skip to main content
Log in

Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales)

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In this study, ten cyanobacterial strains assigned to the oscillatorian species Phormidium autumnale have been characterized using a polyphasic approach by comparing phenotypic and molecular characteristics. The phenotypic analysis dealt with cell and filament morphology, ultrastructure, and pigment content. The molecular phylogenetic analyses were based on sequences of the 16S rRNA gene and the adjacent intergenic transcribed spacer (ITS). The strains were quite homogenous in their morphologic features. Their thylakoids showed a stacked or fascicular pattern. Some, but not all strains contained phycoerythrin. Only one strain (P. autumnale UTCC 476) deviated significantly in its phenotype by lacking a calyptra. In neighbour-joining and maximum Parsimony trees most 16S rRNA sequences were located on a single well-defined branch, which, however, also harboured sequences assigned to other cyanobacterial genera. Two strains (P. autumnale UTCC 476 and P. autumnale UTEX 1580) were found on distant branches. The presence of phycoerythrin was not correlated with the strains’ position in the phylogenetic trees. Our results reconfirm that the morphospecies P. autumnale and the Phormidium group in general are not phylogenetically coherent and require revision. However, as indicated by sequence similarities most of the strains assigned to P. autumnale except P. autumnale UTCC 476 and P. autumnale UTEX 1580 are phylogenetically related and might belong to a single genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anagnostidis K, Komárek J (1988) Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Algol Stud 50–53:327–472

    Google Scholar 

  • Bourrelly P (1970) Les algues d’eau douce, vol III. N. Boubée & Cie, Paris

    Google Scholar 

  • Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S–23S ITS region. J Phycol 38:1222–1235

    Article  CAS  Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (cyanobacteria). J Phycol 41:421–438

    Article  CAS  Google Scholar 

  • Cermeno P, Maranon E, Harbour D, Harris RP (2006) Invariant scaling of phytoplankton abundance and cell size in contrasting marine environments. Ecol Lett 9:1210–1215

    Article  PubMed  Google Scholar 

  • Comte K, Sabacka M, Carre-Mlouka A, Elster J, Komárek J (2007) Relationships between the Arctic and the Antarctic cyanobacteria; three Phormidium-like strains evaluated by a polyphasic approach. FEMS Microbiol Ecol 59:366–376

    Article  PubMed  CAS  Google Scholar 

  • Desikachary TV (1959) Cyanophyta. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Fiore MF, Neilan BA, Copp JN, Rodrigues JLM, Tsai SM, Lee H, Trevors JT (2005) Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Res 39:5017–5026

    Article  CAS  Google Scholar 

  • Fox GE, Wisotzkey JD, Jurtshuk P Jr (1992) How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170

    Article  PubMed  CAS  Google Scholar 

  • Frémy P (1934) Cyanophycées des côtes d’Éurope. Mem Soc Nat Sci Nat Math Cherbourg 41:1–234

    Google Scholar 

  • Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291

    PubMed  CAS  Google Scholar 

  • Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado plateau. Appl Environ Microbiol 67:1902–1910

    Article  PubMed  CAS  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Kolkwitz R (ed) Rabenhorst’s Kryptogamenflora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgesellschaft, Leipzig, pp 1–1196

    Google Scholar 

  • Gleason F, Paulson JL (1984) Site of action of the natural algicide, cyanobacterin, in the bluegreen alga, Synechococcus sp. Arch Microbiol 138:273–277

    Article  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  Google Scholar 

  • Iteman I, Rippka R, Tandeau de Marsac N, Herdman M (2000) Comparison of conserved structural and regulatory domains within divergent 16S–23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275–1286

    PubMed  CAS  Google Scholar 

  • Kann E, Komárek J (1970) Systematisch-ökologische Bemerkungen zu den Arten des Formenkreises Phormidium autumnale. Schweiz Z Hydrol Basel 32:495–518

    Article  Google Scholar 

  • Komárek J (1972) Temperaturbedingte morphologische Variabilität bei drei Phormidium-Arten (Cyanophyceae) in Kulturen. Preslia 44:293–307

    Google Scholar 

  • Komárek J (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica—a survey. Arch Hydrobiol Suppl Algol Stud 129:181–193

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota, part 2. Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (ed) Süßwasserflora von Mitteleuropa, vol 19/2. Gustav Fischer, Jena

    Google Scholar 

  • Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Lund JWG (1955) Contributions to our knowledge of British algae. XIV. Three new species from the English Lake District. Hydrobiologia 7:219–229

    Article  Google Scholar 

  • Marquardt J, Palinska KA (2007) Genotypic and phenotypic diversity of cyanobacteria assigned to the genus Phormidium (Oscillatoriales) from different habitats and geographical sites. Arch Microbiol 187:397–413

    Article  PubMed  CAS  Google Scholar 

  • Mullins T, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr 40:148–158

    Article  CAS  Google Scholar 

  • Nadeau T-L, Milbrandt EC, Castenholz RW (2001) Evolutionary relationships of cultivated Antarctic oscillatorians (cyanobacteria). J Phycol 37:650–654

    Article  Google Scholar 

  • Nobles DR, Romanovicz DK, Brown RM Jr (2001) Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? Plant Physiol 127:529–542

    Article  PubMed  CAS  Google Scholar 

  • Palinska KA, Liesack W, Rhiel E, Krumbein WE (1996) Phenotype variability of identical genotypes: the need for a combined cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Arch Microbiol 166:224–233

    Article  PubMed  CAS  Google Scholar 

  • Palinska KA, Thomasius CF, Marquardt J, Golubic S (2006) Phylogenetic evaluation of cyanobacteria preserved as historic herbarium exsiccata. Int J Syst Evol Microbiol 56:2253–2263

    Article  PubMed  CAS  Google Scholar 

  • Prézelin BB, Glover HE, Campbell L (1987) Effects of light intensity and nutrient availability on diel patterns of cell metabolism and growth in populations of Synechococcus spp. Mar Biol 95:469–480

    Article  Google Scholar 

  • Rajaniemi R, Hrouzek P, Kastovska K, Willame R, Rantala A, Hoffmann L, Komárek J, Sivonen K (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (nostocales, cyanobacteria). Int J Syst Evol Microbiol 55:11–26

    Article  PubMed  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure culture of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron-microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    CAS  Google Scholar 

  • Stal LJ, Krumbein WE (1985) Isolation and characterization of cyanobacteria from a marine microbial mat. Botanica Marina 28:351–365

    Article  Google Scholar 

  • Suda S, Watanabe MM, Otsuka S, Mahakahant A, Yongmanitchai W, Nopartnaraparn N, Liu Y, Day JG (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int J Syst Evol Microbiol 52:1577–1595

    Article  PubMed  CAS  Google Scholar 

  • Surosz W, Palinska KA (2004) Effects of heavy metals stress on cyanobacterium Anabaena flosaquae. Arch Environ Contam Toxicol 48:40–48

    Article  CAS  Google Scholar 

  • Turner S (1997) Molecular systematics of oxygenic photosynthetic bacteria. In: Bhattacharya D (ed) The origin of the algae and their plastids. Springer, Berlin

    Google Scholar 

  • Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Warren-Rhodes KA, Rhodes KL, Pointing SB, Ewing SA, Lacap DC, Gomez Silva B, Amundson R, Friedmann EI, McKay CP (2006) Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama desert. Microb Ecol 52:389–398

    Article  PubMed  Google Scholar 

  • Whitton BA (1992) Diversity, ecology, and taxonomy of the cyanobacteria. In: Mann NH, Carr NG (eds) Photosynthetic prokaryotes. Plenum, New York, pp 1–51

    Google Scholar 

  • Willame R, Boutte C, Grubisic S, Wilmotte A, Komárek J, Hoffmann L (2006) Morphological and molecular characterization of planktonic cyanobacteria from Belgium and Luxembourg. J Phycol 42:1312–1332

    Article  CAS  Google Scholar 

  • Wilmotte A, Herdman M (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, New York, pp 487–493

    Google Scholar 

  • Wilmotte A, Stam W, Demoulin V (1997) Taxonomic study of marine oscillatorian strains (Cyanophyceae, cyanobacteria) with narrow trichomes. II. DNA–DNA hybridization studies and taxonomic conclusions. Arch Hydrobiol Suppl Algol Stud 87:11–28

    Google Scholar 

Download references

Acknowledgments

This work was supported by DFG, grant PA 842/1–3. Authors wish to thank Sophie Martyna and Heike Oeltjen for the help by the scanning and transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna A. Palinska.

Additional information

Communicated by Mary Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palinska, K.A., Marquardt, J. Genotypic and phenotypic analysis of strains assigned to the widespread cyanobacterial morphospecies Phormidium autumnale (Oscillatoriales). Arch Microbiol 189, 325–335 (2008). https://doi.org/10.1007/s00203-007-0323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-007-0323-9

Keywords

Navigation