Skip to main content
Log in

The rggC locus, with a frameshift mutation, is involved in oxidative stress response by Streptococcus thermophilus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Streptococcus thermophilus, the locus rggC contains a frameshift mutation and thus consists of two open reading frames (ORFs), rggC 1 and rggC 2, which encode proteins exhibiting similarity with the Rgg transcriptional regulator family. In this work, mutants showing a partial deletion of rggC 1 and rggC 2 were constructed and their response to menadione, a superoxide-generating compound, was analysed. These mutants exhibited different behaviour to this oxidative stress compared with the wild-type strain. Analysis of this locus among 21 strains of S. thermophilus showed a polythymine tract length variability and a strain-dependant adenine residue could be found upstream of this repeat. This interstrain polymorphism supports evidence for the hypothesis that the rggC locus is phase variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 

Similar content being viewed by others

References

  • Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF (2005) Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 6:R25

    Article  PubMed  Google Scholar 

  • Biswas I, Gruss A, Ehrlich SD, Maguin E (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175:3628–3635

    PubMed  CAS  Google Scholar 

  • Bolotin A et al (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    Article  PubMed  CAS  Google Scholar 

  • Bracquart P (1981) An agar medium for the differential enumeration of Streptococcus thermophilus and Lactobacillus bulgaricus in yoghurt. J Appl Bacteriol 51:303–305

    Google Scholar 

  • Chaussee MS, Ajdic D, Ferretti JJ (1999) The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect Immun 67:1715–1722

    PubMed  CAS  Google Scholar 

  • Chaussee MS, Watson RO, Smoot JC, Musser JM (2001) Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect Immun 69:822–831

    Article  PubMed  CAS  Google Scholar 

  • Chaussee MS et al (2002) Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun 70:762–770

    Article  PubMed  CAS  Google Scholar 

  • Chaussee MS, Somerville GA, Reitzer L, Musser JM (2003) Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J Bacteriol 185:6016–6024

    Article  PubMed  CAS  Google Scholar 

  • Chaussee MA, Callegari EA, Chaussee MS (2004) Rgg regulates growth phase-dependent expression of proteins associated with secondary metabolism and stress in Streptococcus pyogenes. J Bacteriol 186:7091–7099

    Article  PubMed  CAS  Google Scholar 

  • Demple B (1996) Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon––a review. Gene 179:53–57

    Article  PubMed  CAS  Google Scholar 

  • Echenique JR, Trombe MC (2001) Competence modulation by the NADH oxidase of Streptococcus pneumoniae involves signal transduction. J Bacteriol 183:768–772

    Article  PubMed  CAS  Google Scholar 

  • Echenique JR, Chapuy-Regaud S, Trombe MC (2000) Competence regulation by oxygen in Streptococcus pneumoniae: involvement of ciaRH and comCDE. Mol Microbiol 36:688–696

    Article  PubMed  CAS  Google Scholar 

  • Fernandez A, Thibessard A, Borges F, Gintz B, Decaris B, Leblond-Bourget N (2004) Characterization of oxidative stress-resistant mutants of Streptococcus thermophilus CNRZ368. Arch Microbiol 182:364–372

    Article  PubMed  CAS  Google Scholar 

  • Hallet B (2001) Playing Dr Jekyll and Mr Hyde: combined mechanisms of phase variation in bacteria. Curr Opin Microbiol 4:570–581

    Article  PubMed  CAS  Google Scholar 

  • Hecker M, Volker U (1998) Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol Microbiol 29:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M (1992) Reduced nicotinamide adenine dinucleotide oxidase involvement in defense against oxygen toxicity of Streptococcus mutans. Oral Microbiol Immunol 7:309–314

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M et al (1999) Functions of two types of NADH oxidases in energy metabolism and oxidative stress of Streptococcus mutans. J Bacteriol 181:5940–5947

    PubMed  CAS  Google Scholar 

  • Hols P et al (2005) New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29:435–463

    Article  PubMed  CAS  Google Scholar 

  • Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF (2000) Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci USA 97:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Leenhouts K (1995) Integration strategies and vectors. Dev Biol Stand 85:523–530

    PubMed  CAS  Google Scholar 

  • Lukomski S et al (2001) Identification and characterization of a second extracellular collagen-like protein made by group A Streptococcus: control of production at the level of translation. Infect Immun 69:1729–1738

    Article  PubMed  CAS  Google Scholar 

  • Lyon WR, Gibson CM, Caparon MG (1998) A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. Embo J 17:6263–6275

    Article  PubMed  CAS  Google Scholar 

  • Maguin E, Prévost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in Lactococci and other Gram-positive bacteria. J Bacteriol 178:931–935

    PubMed  CAS  Google Scholar 

  • Mongkolsuk S, Helmann JD (2002) Regulation of inducible peroxide stress responses. Mol Microbiol 45:9–15

    Article  PubMed  CAS  Google Scholar 

  • Neely MN, Lyon WR, Runft DL, Caparon M (2003) Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J Bacteriol 185:5166–5174

    Article  PubMed  CAS  Google Scholar 

  • Niven DF, Ekins A (2001) Iron content of Streptococcus suis and evidence for a dpr homologue. Can J Microbiol 47:412–416

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan TF, Fitzgerald GF (1999) Electrotransformation of industrial strains of Streptococcus thermophilus. J Appl Microbiol 86:275–283

    Article  PubMed  CAS  Google Scholar 

  • Penno C, Sansonetti P, Parsot C (2005) Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol Microbiol 56:204–214

    Article  PubMed  CAS  Google Scholar 

  • Pulliainen AT, Haataja S, Kahkonen S, Finne J (2003) Molecular basis of H2O2 resistance mediated by Streptococcal Dpr. demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis. J Biol Chem 278:7996–8005

    Article  PubMed  CAS  Google Scholar 

  • Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J (2005) Dps/Dpr ferritin-like protein: insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis. Mol Microbiol 57:1086–1100

    Article  PubMed  CAS  Google Scholar 

  • Puopolo KM, Madoff LC (2003) Upstream short sequence repeats regulate expression of the alpha C protein of group B Streptococcus. Mol Microbiol 50:977–991

    Article  PubMed  CAS  Google Scholar 

  • Qi F, Chen P, Caufield PW (1999) Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New York

  • Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Sulavik MC, Clewell DB (1996) Rgg is a positive transcriptional regulator of the Streptococcus gordonii gtfG gene. J Bacteriol 178:5826–5830

    PubMed  CAS  Google Scholar 

  • Terzaghy BE, Sandine WE (1975) Improved medium for lactic streptococci. Curr Microbiol 7:245–250

    Google Scholar 

  • Thibessard A, Fernandez A, Gintz B, Leblond-Bourget N, Decaris B (2001) Hydrogen peroxide effects on Streptococcus thermophilus CNRZ368 cell viability. Res Microbiol 152:593–596

    Article  PubMed  CAS  Google Scholar 

  • Thibessard A, Borges F, Fernandez A, Gintz B, Decaris B, Leblond-Bourget N (2004) Identification of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress. Appl Environ Microbiol 70:2220–2229

    Article  PubMed  CAS  Google Scholar 

  • Voskuil MI, Chambliss GH (1998) The −16 region of Bacillus subtilis and other gram-positive bacterial promoters. Nucleic Acids Res 26:3584–3590

    Article  PubMed  CAS  Google Scholar 

  • Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF (1990) Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 18:3529–3535

    Article  PubMed  CAS  Google Scholar 

  • Wen ZT, Suntharaligham P, Cvitkovitch DG, Burne RA (2005) Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 73:219–225

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) An iron-binding protein, Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184:2931–2939

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Fukui K, Koujin N, Ohya H, Kimura K, Kamio Y (2004) Regulation of the intracellular free iron pool by Dpr provides oxygen tolerance to Streptococcus mutans. J Bacteriol 186:5997–6002

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Annabelle Fernandez was supported by grants from the Ministère de la recherche. Frédéric Borges was supported by a grant from the Institut National de la Recherche Agronomique. We are grateful to Arran Johnson for his advice regarding the English formulation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Leblond-Bourget.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, A., Borges, F., Gintz, B. et al. The rggC locus, with a frameshift mutation, is involved in oxidative stress response by Streptococcus thermophilus . Arch Microbiol 186, 161–169 (2006). https://doi.org/10.1007/s00203-006-0130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0130-8

Keywords

Navigation