Skip to main content
Log in

Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A thermophilic, anaerobic, spore-forming bacterium (strain TMS) was isolated from a thermophilic bioreactor operated at 65 °C with methanol as the energy source. Cells were gram-positive straight rods, 0.4–0.6 µm×2–8 μm, growing as single cells or in pairs. The temperature range for growth was 40–70 °C with an optimum at 65 °C. Growth was observed from pH 5.5 to 8.5, and the optimum pH was around 7. The salinity range for growth was 0–45 g NaCl l−1 with an optimum at 10 g l−1. The isolate was able to grow on methanol, H2-CO2 (80/20%, v/v), formate, lactate, pyruvate, glucose, fructose, cellobiose and pectin. The bacterium reduced thiosulfate to sulfide. The G+C content of the DNA was 53 mol%. Comparison of 16S rRNA genes revealed that strain TMS is related to Moorella glycerini (96%, sequence similarity), Moorella thermoacetica (92%) and Moorella thermoautotrophica (92%). On the basis of physiological and phylogenetic differences, strain TMS is proposed as a new species within the genus Moorella, Moorella mulderi sp. nov. (=DSM 14980, =ATCC BAA-608).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

D :

Decimal reduction time

D 10 -time :

Time required to reduce viable counts to 10%

AQDS :

Anthraquinone-2,6-disulfonate

References

  • Bache R, Pfennig N (1981) Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yield. Arch Microbiol 130:255–261

    CAS  Google Scholar 

  • Balk M, Weijma J, Stams AJM (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Braun M, Stolp H (1985) Degradation of methanol by a sulfate reducing bacterium. Arch Microbiol 142:77–80

    CAS  Google Scholar 

  • Byrer DE, Rainey FA, Wiegel J (2000) Novel strains of Moorella thermoacetica form unusually heat-resistant spores. Arch Microbiol 174:334–339

    Article  CAS  PubMed  Google Scholar 

  • Cato EP, George WL, Finegold SM (1986) Genus Clostridium In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's manual of systematic bacteriology, vol. 2. Williams and Wilkins, Baltimore, pp 1141–1200

  • Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826

    CAS  PubMed  Google Scholar 

  • Davidova IA, Stams AJM (1996) Sulfate reduction with methanol by a thermophilic consortium obtained from a methanogenic reactor. Appl Microbiol Biotechnol 46:297–302

    Article  CAS  Google Scholar 

  • Diekert G (1991) The acetogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K (eds) The prokaryotes, Springer-Verlag, New York, pp 517–533

  • Doetsch, RN (1981) Determinative methods of light microscopy. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington, USA, pp.21–33

  • Donnely LS, Busta FF (1980) Heat resistance of Desulfotomaculum nigrificans spores in soy protein infant formula preparations. Appl Environ Microbiol 40:721–725

    PubMed  Google Scholar 

  • Drake HL (1992) Acetogenesis and acetogenic bacteria. In: Ledenberg J (ed) Encyclopedia of Microbiology. Academic Press, San Diego, pp 1–15

  • Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol 43:701–706

    CAS  Google Scholar 

  • Heijthuijsen JHFG, Hansen TA (1986) Interspecies hydrogen transfer in co-cultures of methanol-utilizing acidogens and sulfate-reducing or methanogenic bacteria. FEMS Microbiol Ecol 38:57–64

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rDNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics, J. Wiley & Sons, Chicester, England. pp. 115–175

  • Lynd LH, Zeikus JG (1983) Metabolism of H2-CO2, methanol, and glucose by Butyribacterium methylotrophicum. J Bacteriol 153:1415–1423

    CAS  PubMed  Google Scholar 

  • Marmur J (1961) Procedure for the isolation of desoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    CAS  Google Scholar 

  • van der Meijden P, van der Drift C, Vogels GD (1984) Methanol conversion in Eubacterium limosum. Arch Microbiol 138:360–364

    Google Scholar 

  • Nanninga HJ, Gottschal JC (1986) Isolation of a sulfate-reducing bacterium growing with methanol. FEMS Microbiol Ecol 38:125–130

    Article  CAS  Google Scholar 

  • Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Bachhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNAs Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643

    PubMed  Google Scholar 

  • Owen RJ, Hill RL, Lapage SP (1969) Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516

    CAS  PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  Google Scholar 

  • Scholten JCM, Stams AJM (1995) The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeuwenhoek 68:309–315

    CAS  PubMed  Google Scholar 

  • Slobodkin A, Reysenbach A, Mayer F, Wiegel J (1997) Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. Int J Syst Bacteriol 47:969–974

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Charfreitag O (1990) Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii-specific oligonucleotide probe. J Gen Microbiol 136:37–43

    CAS  PubMed  Google Scholar 

  • Stadtman TC, Barker HA (1951) Studies on the methane fermentation. The origin of methane in the acetate and methanol fermentations by Methanosarcina. J. Bacteriol 16:81–86

    Google Scholar 

  • Stams AJM, van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119

    CAS  Google Scholar 

  • Strunk O, Ludwig W (1991) ARB: a software environment for sequence data. Department of Microbiology, Technical University of Munich, Munich, Germany (e-mail: ARB@micro.biologie.tu-muenchen.de)

  • Touzel JP, Petroff D, Albagnac G (1985) Isolation and characterization of a new thermophilic Methanosarcina, the strain CHTI 55. Sys Appl Microbiol 6:66–71

    CAS  Google Scholar 

  • Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodacea. I. Quantitative measurements of growing cells of Chromatium okenii. Antonie van Leeuwenhoek 30:225–238

    Google Scholar 

  • Vogels GD, Keltjens JT, van der Drift C (1988) Biochemistry of methane production. In: Zehnder AJB (ed) Biology of anaerobic bacteria. Wiley, New York, pp 707–770

  • Weijma J (2000) Methanol as electron donor for thermophilic biological sulfate and sulfite reduction. PhD thesis, Wageningen Agricultural University, The Netherlands

  • Weijma J, Stams AJM, Hulshoff Pol LW, Lettinga G (2001) Thermophilic sulfate reduction and methanogenesis with methanol in a high rate anaerobic reactor. Biotechnol Bioeng 67:354–363

    Article  Google Scholar 

  • Wiegel J, Braun M, Gottschalk G (1981) Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide. Curr Microbiol 5:255–260

    CAS  Google Scholar 

  • Williams BJ, Robertson WJ (1954) Studies on heat resistance. VI. Effect of temperature of incubation at which formed on heat resistance of aerobic thermophilic spores. J Bacteriol 67:377–378

    Google Scholar 

  • Zoetendal EG, Akkermans ADL, de Vos, WM (1998) Temperature gradient gel electrophoresis from human fecal samples reveals stable and host-specific communities of bacteria. Appl Environ Microbiol 64:3854–3859

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Lysenko for the determination of the G+C content analysis at the Institute of Microbiology of the Russian Academy of Sciences in Moscow and C.M. Plugge for her help with the construction of the phylogenetic tree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Balk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balk, M., Weijma, J., Friedrich, M.W. et al. Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor. Arch Microbiol 179, 315–320 (2003). https://doi.org/10.1007/s00203-003-0523-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-003-0523-x

Keywords

Navigation