Skip to main content
Log in

Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract.

Syntrophic cocultures of Geobacter sulfurreducens and Wolinella succinogenes oxidize acetate with nitrate as terminal electron acceptor. It has been postulated earlier that electrons are transferred in these cocultures not via hydrogen, but via a different carrier, e.g., a small c-type cytochrome that is detected in the supernatant of growing cultures. In the present study, L -cysteine, which was provided as a reducing agent, was found to mediate the electron transfer between the two partners. Low concentrations of L -cysteine or L -cystine (10–100 µM) supported syntrophic growth, and no acetate oxidation was observed in the absence of cysteine or cystine. Cell suspensions of G. sulfurreducens or coculture cell suspensions reduced cystine to cysteine, and suspensions of W. succinogenes or coculture suspensions oxidized cysteine with nitrate, as measured by the formation or depletion of free thiol groups. Added cysteine was rapidly oxidized by the coculture during growth, but the formed cystine was not entirely rereduced even under acceptor-limited conditions. The redox potential prevailing in acetate-oxidizing cocultures was –160 to –230 mV. Sulfide at low concentrations supported syntrophic growth as well and could replace cysteine. Neither growth nor acetate degradation was found with D-cysteine, homocysteine, cysteamine, 3-mercaptopropionate, dithiothreithol, thioglycolate, glutathione, coenzyme M, dimethylsulfoxide, trimethylamine-N-oxide, anthraquinone-2,6-disulfonate, or ascorbate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaden, J., S. Galushko, A. & Schink, B. Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178, 53–58 (2002). https://doi.org/10.1007/s00203-002-0425-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-002-0425-3

Navigation