Skip to main content

Advertisement

Log in

Mitigation of harmonics in a 6 kV and 650 kW motor

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

Motors that work with high voltage and consume a lot of power, specifically those of 6 kV and 650 kW, generate harmonics of voltage and current harmful to the electro-energy system, causing problems in its correct operation. In this study, the quality of the electrical energy of a motor having those characteristics is analyzed by measuring voltage, current intensity, power factor, active power, reactive power, as well as voltage and current harmonics. Results show that the main problem lies in the fact that the total current harmonic distortion reached a value of 17.1%, which is above the maximum value permissible according to the standard for the motor object of study. However, the total voltage harmonic distortion resulted within the allowable values, reaching a maximum of 3.3%. To mitigate the harmful effects of the total current harmonic distortion, passive and active filters were designed and simulated to improve the motor's operation and solve the problems. For the design and simulation of the filters, MATLAB R2015a software and LabView 2014 software were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The data used in the research were obtained from the measurement made in the laboratory and in the supervision carried out with MATLAB and LabView software.

References

  1. Ramírez Cataño S, Cano Plaata EA (2006) Quality of electric power service. 1st edition. Centro de Publicaciones Universidad Nacional de Colombia, Universidad Nacional de Colombia Sede Manizales

  2. Bernet D, Stefanski L, Hiller M (2021) Integrating voltage-source active filters into grid-connected power converters—modeling, control, and experimental verification. In IEEE Trans Power Electron 36(11):12218–12233. https://doi.org/10.1109/TPEL.2021.3075068

    Article  Google Scholar 

  3. Beltrán Aguedo R, Lussón Cervantes A, Nuñez Alvarez JR, Llosas Albuerne Y (2021) Speed control in DC and AC drives. Int J Power Electron Drive Syst 12(4):2006

    Google Scholar 

  4. Jove E, González-Cava JM, Casteleiro-Roca J-L, Alaiz-Moretón H, Baruque B, Leitão P, Méndez Pérez JA, Calvo-Rolle JL (2021) An intelligent system for harmonic distortions detection in wind generator power electronic devices. Neurocomputing 456:609–621. https://doi.org/10.1016/j.neucom.2020.07.155

    Article  Google Scholar 

  5. Adineh B, Keypour R, Sahoo S, Davari P, Blaabjerg F (2022) Robust optimization based harmonic mitigation method in islanded microgrids. Int J Electr Power Energy Syst 137:107631. https://doi.org/10.1016/j.ijepes.2021.107631

    Article  Google Scholar 

  6. Mirzapour O, Karimi-Arpanahi S, Oraee H (2018) Evaluating grid harmonics effect on induction motor using reduced thermal model. In: 2018 smart grid conference (SGC), pp 1–5. https://doi.org/10.1109/SGC.2018.8777879

  7. Nayusrizal N, Untari I, Putra AA, Hudaya C (2019) Effects of harmonic distortions on the accuracy of energy and power losses measurements in a water treatment industry. In: 2019 IEEE 2nd international conference on power and energy applications (ICPEA), pp 277–281. https://doi.org/10.1109/ICPEA.2019.8818547

  8. Sousa V, Hernández H, Quispe EC, Viego PR, Gómez JR (2017) Harmonic distortion evaluation generated by PWM motor drives in electrical industrial systems. Int J Electr Comput Eng 7(6):3207–3216

    Google Scholar 

  9. He Z, Lin H, Zhu H, Liu C (2020) A compact high-efficiency rectifier with simple harmonic suppression structure. IEEE Microw Wirel Compon Lett 30(12):1177–1180. https://doi.org/10.1109/LMWC.2020.3029277

    Article  Google Scholar 

  10. Khaledian P, Johnson BK, Hemati S (2018) Harmonic mitigation and a practical study of torque harmonics in induction motor startup. IEEE Power Energy Soc Gen Meet. https://doi.org/10.1109/PESGM.2018.8586670

    Article  Google Scholar 

  11. Sousa V, Viego PR, Gomez JR, Quispe EC, Balbis M (2016) Shaft power estimation in induction motor operating under unbalanced and harmonics voltages. IEEE Lat Am Trans 14(5):2309–2315. https://doi.org/10.1109/TLA.2016.7530427

    Article  Google Scholar 

  12. IEEE Recommended Practice for Monitoring Electric Power Quality (2019) In: IEEE Std 1159–2019 (Revision of IEEE Std 1159–2009), pp 1–98. https://doi.org/10.1109/IEEESTD.2019.8796486

  13. Nehad MK, Abdel Aleem SHE, El’Gharably A, Boghdady TA, Turky RA, Ali ZM, Sayed MM (2022) A novel design of fourth-order harmonic passive filters for total demand distortion minimization using crow spiral-based search algorithm. Ain Shams Eng J 13(3):101632. https://doi.org/10.1016/j.asej.2021.11.001

    Article  Google Scholar 

  14. Gandoman FH, Abdel Aleem SHE, Jurado F, Ali ZM, Ahmadi A, Shamkhani K (2020) A methodology for imposing harmonic distortion’s penalty in customers bill. Electric Power Syst Res 183:106268. https://doi.org/10.1016/j.epsr.2020.106268

    Article  Google Scholar 

  15. Manito A, Bezerra U, Tostes M, Matos E, Carvalho C, Soares T (2018) Evaluating harmonic distortions on grid voltages due to multiple nonlinear loads using artificial neural networks. Energies 11(12):3303. https://doi.org/10.3390/en11123303

    Article  Google Scholar 

  16. George S, Agarwal V (2008) Optimum control of selective and total harmonic distortion in current and voltage under nonsinusoidal conditions. IEEE Trans Power Deliv 23(2):937–944. https://doi.org/10.1109/TPWRD.2007.916011

    Article  Google Scholar 

  17. Hussein AA, Chen X, Alharbi M, Pise AA, Batarseh I (2020) Design of a grid-tie photovoltaic system with a controlled total harmonic distortion and tri maximum power point tracking. In IEEE Trans on Power Electron 35(5):4780–4790. https://doi.org/10.1109/TPEL.2019.2946586

    Article  Google Scholar 

  18. Schneider C (2022) Steel manufacturing clusters in a hydrogen economy—Simulation of changes in location and vertical integration of steel production in Northwestern Europe. J Clean Product 341:130913. https://doi.org/10.1016/j.jclepro.2022.130913

    Article  Google Scholar 

  19. Taghipour A, Wareerath W, Eaknarajindawat N, Stefanakis AI (2022) The impact of government policies and steel recycling companies’ performance on sustainable management in a circular economy. Resour Policy 77:102663. https://doi.org/10.1016/j.resourpol.2022.102663

    Article  Google Scholar 

  20. Fernández JC, Corrales LB, Benitez IF, Núñez JR, Hernández FH, Llosas Y (2022) A proposal for the diagnosis of incipient faults in power transformers using fuzzy logic techniques. Int Rev Electr Eng 17(1):29–38

    Google Scholar 

  21. Zhu T, Wang X, Yu Y, Li C, Yao Q, Li Y (2023) Multi-process and multi-pollutant control technology for ultra-low emissions in the iron and steel industry. J Environ Sci 123:83–95. https://doi.org/10.1016/j.jes.2022.01.044

    Article  Google Scholar 

  22. Pourmehdi M, Paydar MM, Ghadimi P, Azadnia AH (2022) Analysis and evaluation of challenges in the integration of Industry 4.0 and sustainable steel reverse logistics network. Comput Ind Eng 163:107808. https://doi.org/10.1016/j.cie.2021.107808

    Article  Google Scholar 

  23. Blanco JCF, Barrios GFHH, LBC, (2021) Método de lógica difusa para el diagnóstico de fallos incipientes en un transformador de 40 MVA. Revista Ingeniería Electrónica, Automática y Comunicaciones 42(2):76–88

    Google Scholar 

  24. Fernández JC, Corrales LB, Benítez IF, Núñez JR (2022) Fault diagnosis of combustion engines in mtu 16vs4000-g81 generator sets using fuzzy logic: An approach to normalize specific fuel consumption. Cham, Springer International Publishing, pp 17–29. https://doi.org/10.1007/978-3-030-98457-1_2

  25. Fernández JC, Corrales LB, Hernández FH, Benítez IF, Núñez JR (2021) A fuzzy logic proposal for diagnosis multiple incipient faults in a power transformer. Adv Data Min Appl. https://doi.org/10.1007/978-3-030-89691-1_19

    Article  Google Scholar 

  26. Ricardo AR, Benitez I, González G, Nuñez JR, Llosas Y (2022) Multi-agent system for steel manufacturing process. Int J Electr Comput Eng 12(3):2441–2453

    Google Scholar 

  27. Bagavathy S, Ramesh Kumar P, Anantha Christu Raj P, Stalin B (2021) Frequency measurement through electric network analyzer for ultrasonic machining of steel. Mater Today: Proc 45(2):1775–1778. https://doi.org/10.1016/j.matpr.2020.08.629

    Article  Google Scholar 

  28. Gnaciński P et al (2020) Power quality and energy-efficient operation of marine induction motors. IEEE Access 8:152193–152203. https://doi.org/10.1109/ACCESS.2020.3017133

    Article  Google Scholar 

  29. Abbas AS, El-Sehiemy RA, Abou El-Ela A, Ali ES, Mahmoud K, Lehtonen M, Darwish MMF (2021) Optimal harmonic mitigation in distribution systems with inverter based distributed generation. Appl Sci 11(2):774. https://doi.org/10.3390/app11020774

    Article  Google Scholar 

  30. Bouali Y, Imarazene K, Berkouk EM (2022) Total harmonic distortion optimization of multilevel inverters using genetic algorithm: experimental test on NPC topology with self-balancing of capacitors voltage using multilevel DC–DC converter. Arab J Sci Eng. https://doi.org/10.1007/s13369-022-07265-8

    Article  Google Scholar 

  31. Zhao X et al (2018) A voltage feedback based harmonic compensation strategy for current-controlled converters. IEEE Trans Ind Appl 54(3):2616–2627. https://doi.org/10.1109/TIA.2017.2759083

    Article  Google Scholar 

  32. Kasikci I (2000) A new method for power factor correction and harmonic elimination in power systems. Ninth Int Conf Harmon Qual Power 3:810–815. https://doi.org/10.1109/ICHQP.2000.896833

    Article  Google Scholar 

  33. Sikder N, Mohammad Arif AS, Islam MMM et al (2021) Induction motor bearing fault classification using extreme learning machine based on power features. Arab J Sci Eng 46:8475–8491. https://doi.org/10.1007/s13369-021-05527-5

    Article  Google Scholar 

  34. Yu J, Lin X, Song D, Yu R, Li Y, Su M (2020) Harmonic instability and amplification for grid-connected inverter with voltage harmonics compensation considering phase-locked loop. IEEE J Emerg Select Top Power Electron 8(4):3944–3959. https://doi.org/10.1109/JESTPE.2019.2936257

    Article  Google Scholar 

  35. Fan Y, Zhou Q, Wang J, Mu S, Wang L (2021) Application of superconducting-magnetic-energy-storage-based current-source active power filter in photovoltaics for harmonic mitigation. IEEE Trans Appl Superconduct. https://doi.org/10.1109/TASC.2021.3088766

    Article  Google Scholar 

  36. Jiang S, Liu Y, Liang W, Peng J, Jiang H (2019) Active EMI filter design with a modified LCL–LC filter for single-phase grid-connected inverter in vehicle-to-grid application. IEEE Trans Veh Technol 68(11):10639–10650. https://doi.org/10.1109/TVT.2019.2944220

    Article  Google Scholar 

  37. Sanjan PS et al (2020) Enhancement of power quality in domestic loads using harmonic filters. IEEE Access 8:197730–197744. https://doi.org/10.1109/ACCESS.2020.3034734

    Article  Google Scholar 

  38. Singh B, Chandra A, Al-Haddad K (2014) Power quality: problems and mitigation techniques. Editorial Wiley, p 600

  39. Park B, Lee J, Yoo H, Jang G (2021) Harmonic mitigation using passive harmonic filters: case study in a steel mill power system. Energies 14(8):2278. https://doi.org/10.3390/en14082278

    Article  Google Scholar 

  40. Marriaga-Márquez IA, Gómez-Sandoval KY, Nuñez-Álvarez G-G, JR, (2020) Identification of critical variables in conventional transformers in distribution networks. IOP Conf Ser: Mater Sci Eng 844:012009. https://doi.org/10.1088/1757-899X/844/1/012009

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

LCB, JFB, JNA and FHG were involved in conceptualization, methodology and data processing. LCB, JFB and HMG contributed to supervision; JFB, JNA and HMG were involved in original draft writing; LCB, JFB, JNA, FHG and HMG contributed to draft revision and editing.

Corresponding authors

Correspondence to José R. Nuñez-Alvarez or Herminio Martínez-García.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrales-Barrios, L.B., Fernández-Blanco, J.C., Nuñez-Alvarez, J.R. et al. Mitigation of harmonics in a 6 kV and 650 kW motor. Electr Eng 106, 1705–1713 (2024). https://doi.org/10.1007/s00202-023-01879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-023-01879-3

Keywords

Navigation