Skip to main content

Advertisement

Log in

On-board power quality charger for electric vehicles with minimized switching stresses

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper intends to provide a three-level CUK converter-based on-board electrical vehicle battery charger with improved power quality features. The proposed configuration includes a diode bridge rectifier followed by a DC–DC converter suitable for the universal input voltage variations (85–265 V). It offers reduced voltage stress across the switches, reduced filter size, high efficiency, and improved dynamic response. A feed-forward control scheme is implemented for the proper functioning of the proposed converter under constant current (CC) and constant voltage (CV) modes of operation. In this paper, the mathematical modeling, operational details, and components design of the PFC converter are analyzed in continuous current mode. The simulation study on a 3.2 kW, 400 V proposed converter is carried out with MATLAB Simulink toolbox, and a real-time implementation of the same specifications of the proposed system is developed to verify the simulation study. The steady-state and dynamic behavior of the converter is investigated for power quality features like total harmonics distortion and input power factor with resistive and battery loads. The onboard charger exhibits satisfactory operation in CC and CV modes to a wide range of supply voltage variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liu R, Dow L, Liu E (2011) A survey of PEV impacts on electric utilities. In: Proceedings of IEEE power and energy society innovative smart grid technologies conference, Anaheim, CA, pp 1–8. https://doi.org/10.1109/ISGT.2011.5759171

  2. Tar B, Fayed A (2016) An overview of the fundamentals of battery chargers. In: Proceedings of IEEE 59th international midwest symposium on circuits and systems (MWSCAS), Abu Dhabi, pp 1–4. https://doi.org/10.1109/MWSCAS.2016.7870048

  3. Solero L (2001) Nonconventional on-board charger for electric vehicle propulsion batteries. IEEE Trans Veh Technol 50(1):144–149. https://doi.org/10.1109/25.917904

    Article  Google Scholar 

  4. Yilmaz M, Krein PT (2013) Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans Power Electron 28(5):2151–2169. https://doi.org/10.1109/TPEL.2012.2212917

    Article  Google Scholar 

  5. Shi Y, Tang AK (2017) A single-phase integrated onboard battery charger using propulsion system for plug-in electric vehicles. IEEE Trans Veh Technol 66(12):10899–10910. https://doi.org/10.1109/TVT.2017.2729345

    Article  Google Scholar 

  6. Kim M, Kim BL (2017) An integrated battery charger with high power density and efficiency for electric vehicles. IEEE Trans Power Electron 32(6):4553–4565. https://doi.org/10.1109/TPEL.2016.2604404

    Article  Google Scholar 

  7. Oruganti R, Srinivasan R (1997) Single phase power factor correction: a review. Recent Adv Power Electron Drives 22(6):753–780. https://doi.org/10.1007/BF02745844

    Article  Google Scholar 

  8. Musavi F, Edington M, Eberle W, Dunford WG (2012) Evaluation and efficiency comparison of front end AC–DC plug-in hybrid charger topologies. IEEE Trans Smart Grid 3(1):413–421. https://doi.org/10.1109/ECCE.2011.6063780

    Article  Google Scholar 

  9. Singh B, Singh BN, Chandra A, Al-Haddad K, Pandey A, Kothari DP (2003) A review of single-phase improved power quality AC-DC converters. IEEE Trans Ind Electron 50(5):962–981. https://doi.org/10.1109/TIE.2003.817609

    Article  Google Scholar 

  10. Singh B, Singh S, Chandra A, Al-Haddad K (2011) Comprehensive study of single-phase ac-dc power factor corrected converters with high-frequency isolation. IEEE Trans Ind Inform 7(4):540–556. https://doi.org/10.1109/TII.2011.2166798

    Article  Google Scholar 

  11. International Standard IEC 61000-3-2 (2000) Limits for harmonic current emissions (equipment input current ≤16 A per phase)

  12. Erickson RW, Maksimovic D (2001) Fundamentals of power electronics, 2nd edn. Kluwer, New York

    Book  Google Scholar 

  13. Jovanovic MM, Jang Y (2005) State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications: an overview. IEEE Trans Ind Electron 52(3):701–708. https://doi.org/10.1109/TIE.2005.843964

    Article  Google Scholar 

  14. Wang L, Wu QH, Tang WH, Yu ZY, Ma W (2017) CCM-DCM average current control for both continuous and discontinuous conduction modes boost PFC converters. In: Proceedings of IEEE electrical power and energy conference (EPEC), Saskatoon, SK, pp 1–6. https://doi.org/10.1109/EPEC.2017.8286149

  15. Praneeth AVJS, Williamson SS (2018) A review of front end ac-dc topologies in universal battery charger for electric transportation. In: Proceedings of IEEE transportation electrification conference and expo (ITEC), Long Beach, CA, pp 293–298. https://doi.org/10.1109/ITEC.2018.8450186

  16. Nussbaumer T, Raggl K, Kolar JW (2009) Design guidelines for interleaved single-phase boost PFC circuits. IEEE Trans Ind Electron 56(7):2559–2573. https://doi.org/10.1109/TIE.2009.2020073

    Article  Google Scholar 

  17. Gautam D, Musavi F, Edington M, Eberle W, Dunford WG (2011) An automotive on-board 3.3 kW battery charger for PHEV application. In: Proceedings of IEEE vehicle power and propulsion conference, Chicago, IL, pp 1–6. https://doi.org/10.1109/VPPC.2011.6043192

  18. Praneeth AVJS, Williamson SS (2019) A wide input and output voltage range battery charger using buck-boost power factor correction converter. In: Proceedings of IEEE applied power electronics conference and exposition (APEC), Anaheim, CA, USA, pp 2974–2979. https://doi.org/10.1109/APEC.2019.8721797

  19. Ananthapadmanabha BR, Maurya R, Arya SR (2018) Improved power quality switched inductor Cuk converter for battery charging applications. IEEE Trans Power Electron 33(11):9412–9423. https://doi.org/10.1109/TPEL.2018.2797005

    Article  Google Scholar 

  20. Ruan X, Li B, Chen Q (2002) Three-level converters-a new approach for high voltage and high power DC-to-DC conversion. In: Proceedings of IEEE 33rd annual IEEE power electronics specialists conference (Cat. No. 02CH37289), Cairns, Qld, Australia, pp 663–668. https://doi.org/10.1109/PSEC.2002.1022529

  21. Ruan X, Li B, Chen Q, Tan S, Tse CK (2008) Fundamental considerations of three-level DC–DC converters: topologies, analyses, and control. IEEE Trans Circuits Syst I Regul Pap 55(11):3733–3743. https://doi.org/10.1109/TCSI.2008.927218

    Article  MathSciNet  Google Scholar 

  22. Jappe TK, Mussa SA (2009) Discrete-time current control techniques applied in PFC boost converter at instantaneous power interruption. In: Proceedings of Brazilian power electronics conference, pp 1118–1123. https://doi.org/10.1109/COBEP.2009.5347636

  23. Van de Sype DM, De Gusseme K, Van den Bossche AP, Melkebeek JA (2005) Duty-ratio feedforward for digitally controlled boost PFC converters. IEEE Trans Ind Electron 52(1):108–115. https://doi.org/10.1109/TIE.2004.841127

    Article  Google Scholar 

  24. Chen H, Li H, Yang R (2009) Phase feedforward control for single-phase boost-type SMR. IEEE Trans Power Electron 24(5):1428–1432. https://doi.org/10.1109/TPEL.2009.2013953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Maurya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

S. no.

Specific parameters

Values

1

Single-phase supply voltage

230 V, 50 Hz

2

Input and output inductances (L1, L2)

5 mH

3

Intermediate capacitors (C1, C2)

10 μF

4

Output capacitor (C0)

3000 μF

5

Switching frequency (fs)

10 kHz

6

Load

400 V/8 A

7

Battery nominal voltage

345 V, 40 AH

Control parameters: Gains of output PI voltage controller kpv = 0.00005, kiv = 20 for CV mode, gains of the output PI current controller kpi = 0.1, kii = 10 for CC mode and inner PI current controller kp1 = 0.3, ki1 = 7.8 same for both CV and CC mode operation; feed forward gain is kd = 1.8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, R., Arya, S.R., Saini, R.K. et al. On-board power quality charger for electric vehicles with minimized switching stresses. Electr Eng 104, 1667–1680 (2022). https://doi.org/10.1007/s00202-021-01407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01407-1

Keywords

Navigation