Skip to main content
Log in

Application of \(I^{2}\) technique on dual current mode control of power electronics converters

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

One of the main objectives of the latest advanced current mode control (CMC) methods for power electronics converters is eliminating error between the average value of the inductor current and the reference current over each switching period, in steady and transient state. A special attention is devoted to the \(I^{2}\) average current mode control (\(I^{2}\) ACMC) method, which ensures both accurate current tracking and fast dynamic response. A new application of the \(I^{2}\) concept on dual current mode control (DCMC) method is introduced in this paper. A detailed analysis of the proposed \(I^{2}\) DCMC is performed for two-quadrant (2Q) buck converter, but it can be extended to any type of converter. The obtained simulation and experimental results confirm the performed analysis and demonstrate excellent features of the proposed \(I^{2}\) DCMC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Erickson RW, Maksimović D (2001) Fundamentals of power electronics. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  2. Dixon L (1990) Average current mode control of switching power supplies. Texas Instruments Incorporated, Unitrode Power Supply Design Seminar SEM700, Topic 5, SLUP091, pp 1–14

  3. Morales-Saldana JA, Leyva-Ramos J, Carbajal-Gutierrez EE, Ortiz-Lopez MG (2008) Average current-mode control scheme for a quadratic buck converter with a single switch. IEEE Trans Power Electron 23:485–490. https://doi.org/10.1109/TPEL.2007.910907

    Article  Google Scholar 

  4. Yan Y, Lee FC, Mattavelli P (2013) Analysis and design of average current mode control using a describing-function-based equivalent circuit model. IEEE Trans Power Electron 28:4732–4741. https://doi.org/10.1109/TPEL.2012.2235085

    Article  Google Scholar 

  5. Redl R (1991) Small-signal high-frequency analysis of the free-running current-mode-controlled converter. In: IEEE power electronics specialists conference, Cambridge, MA, USA, pp 897–906. https://doi.org/10.1109/PESC.1991.162782

  6. Gautam S, Gupta R (2013) Unified time-domain formulation of switching frequency for hysteresis current controlled AC/DC and DC/AC grid connected converters. IET Power Electron 6:683–692. https://doi.org/10.1049/iet-pel.2012.0484

    Article  Google Scholar 

  7. Zhou C, Ridley RB, Lee FC (1990) Design and analysis of a hysteretic boost power factor correction circuit. In: IEEE power electronics specialists conference, San Antonio, TX, USA, pp 800-807. https://doi.org/10.1109/PESC.1990.131271

  8. Qiu Y, Liu H, Chen X (2010) Digital average current-mode control of PWM DC-DC converters without current sensors. IEEE Trans Industr Electron 57:1670–1677. https://doi.org/10.1109/TIE.2009.2032130

    Google Scholar 

  9. Buso S, Caldognetto T (2015) A nonlinear wide-bandwidth digital current controller for DC–DC and DC–AC converters. IEEE Trans Industr Electron 62:7687–7695. https://doi.org/10.1109/TIE.2015.2465351

    Article  Google Scholar 

  10. Khazraei M, Ferdowsi M (2013) Modeling and analysis of projected cross point control—a new current-mode-control approach. IEEE Trans Industr Electron 60:3272–3282. https://doi.org/10.1109/TIE.2012.2201429

    Article  Google Scholar 

  11. Hsu SS, Brown A, Rensink L, Middlebrook RD (1979) Modeling and analysis of switching DC-to-DC converters in constant-frequency current programmed mode. In: IEEE power electronics specialists conference, San Diego, CA, USA, pp 284–301. https://doi.org/10.1109/PESC.1979.7081037

  12. Kondrath N, Kazimierczuk MK (2012) Unified model to derive control-to-output transfer function of peak current-mode-controlled pulse-width modulated DC–DC converters in continuous conduction mode. IET Power Electron 5:1706–1713. https://doi.org/10.1049/iet-pel.2012.0147

    Article  Google Scholar 

  13. Sheehan R (2011) Current-mode modeling for peak, valley and emulated control methods. National Semiconductor reference guide, SNVA542, pp 1–94

  14. Lale S, Šoja M, Lubura S (2016) A modified dual current mode control method with an adaptive current bandwidth. Int J Circuit Theory Appl 44:1494–1513. https://doi.org/10.1002/cta.2174

    Article  Google Scholar 

  15. Anunciada AV, Silva MM (1991) A new current mode control process and applications. IEEE Trans Power Electron 6:601–610. https://doi.org/10.1109/63.97758

    Article  Google Scholar 

  16. Chu GML, Lu DDC, Agelidis VG (2012) Practical application of valley current mode control in a flyback converter with a large duty cycle. IET Power Electron 5:552–560. https://doi.org/10.1049/iet-pel.2011.0225

    Article  Google Scholar 

  17. Yan Y, Lee FC, Mattavelli P, Liu PH (2014) \(I^{2}\) average current mode control for switching converters. IEEE Trans Power Electron 29:2027–2036. https://doi.org/10.1109/TPEL.2013.2265381

    Article  Google Scholar 

  18. He S, Hung JY, Nelms RM (2016) Small-signal modeling of \(I^{2}\) average current mode control. IEEE Trans Power Electron 31:3849–3858. https://doi.org/10.1109/TPEL.2015.2459912

    Article  Google Scholar 

  19. Li R, Seto K, Kiefer J, Li S (2016) Analysis, simulation and experimental evaluation of constant-frequency trailing-edge-modulated \(I^{2}\) average current-mode control. In: IEEE international power electronics and motion control conference IPEMC-ECCE Asia, Hefei, P. R. China, pp 2077–2084. https://doi.org/10.1109/IPEMC.2016.7512617

  20. Lachichi A, Pierfederici S, Martin JP, Davat B (2008) Study of a hybrid fixed frequency current controller suitable for DC–DC applications. IEEE Trans Power Electron 23:1437–1448. https://doi.org/10.1109/TPEL.2008.920884

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srđan Lale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lale, S., Šoja, M., Lubura, S. et al. Application of \(I^{2}\) technique on dual current mode control of power electronics converters. Electr Eng 100, 1761–1772 (2018). https://doi.org/10.1007/s00202-017-0653-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-017-0653-9

Keywords

Navigation