Skip to main content
Log in

Different bone health progression patterns and early-stage risk marker in glucocorticoid-treated ambulatory Duchenne muscular dystrophy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

A Correction to this article was published on 06 February 2024

This article has been updated

Abstract

Summary

Fractures often cause irreversible harm in Duchenne muscular dystrophy (DMD). This study investigated the trajectory of bone mineral density (BMD) using group-based trajectory modeling and identified that BMD acts as an early-stage indicator of clinically significant bone fragility. The greater the early-stage BMD, the better the 4-year bone health outcome.

Purpose

Most Duchenne muscular dystrophy (DMD) children suffer bone loss after long-term glucocorticoid (GC) exposure, which induces scoliosis and fragility fractures. To assess the BMD progression pattern and individual medical risk markers for these phenotypes in young ambulatory boys with DMD, and provide evidence-based suggestions for clinical management of bone health.

Methods

A retrospective longitudinal cohort study of 153 boys with DMD in West China Second University Hospital (2016–2023) was performed. Group-based trajectory modeling was used to study the BMD progression pattern, and potential predictors were further analyzed by logistic regression and survival analysis.

Results

One hundred and fifty-three participants were included, 71 of which had more than 3 BMD records. Three BMD trajectories were identified. Baseline BMD and age-started GC and were independent predictors of trajectory attribution. The median survival time of the first observation of low BMD in GC-treated DMD boys was 5.32 (95% CI 4.05–6.59) years, and a significant difference was tested (P < 0.001) among the three trajectory groups.

Conclusion

BMD may serve as a novel early indicating marker for monitoring bone fragility for DMD. We proposed a bone health risk stratification through BMD progression trajectory that allows us to adapt the osteoporosis warning sign in DMD from a fixed threshold approach to a more individualized strategy, where baseline BMD and age of glucocorticoid initiation can provide an earlier prediction of bone loss. Better management of primary BMD may be able to delay or avoid the onset of adverse bone health outcomes in the fifth year in children with DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All datasets generated and analyzed during the current study are not publicly available but are available from the corresponding author on a reasonable request.

Change history

Abbreviations

DMD:

Duchenne muscular dystrophy

GC:

Glucocorticoid

BMD:

Bone mineral density

GBTM:

Group-based trajectory modeling

QCT:

Quantitative computed tomography

OR:

Odd ratio

IQR:

Interquartile range

References

  1. Patterson G, Conner H, Groneman M et al (2023) Duchenne muscular dystrophy: current treatment and emerging exon skipping and gene therapy approach. Eur J Pharmacol 947:175675. https://doi.org/10.1016/j.ejphar.2023.175675

    Article  CAS  PubMed  Google Scholar 

  2. Crisafulli S, Sultana J, Fontana A et al (2020) Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis 15:141. https://doi.org/10.1186/s13023-020-01430-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wood CL, Straub V (2018) Bones and muscular dystrophies: what do we know? Curr Opin Neurol 31:583–591. https://doi.org/10.1097/WCO.0000000000000603

    Article  CAS  PubMed  Google Scholar 

  4. Larson CM, Henderson RC (2000) Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop 20:71–74

    Article  CAS  PubMed  Google Scholar 

  5. Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 17:347–361. https://doi.org/10.1016/S1474-4422(18)30025-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bushby K, Finkel R, Birnkrant DJ et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol 9:177–189. https://doi.org/10.1016/S1474-4422(09)70272-8

    Article  CAS  PubMed  Google Scholar 

  7. Ryder S, Leadley RM, Armstrong N et al (2017) The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J Rare Dis 12:79. https://doi.org/10.1186/s13023-017-0631-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grover M, Bachrach LK (2017) Osteoporosis in children with chronic illnesses: diagnosis, monitoring, and treatment. Curr Osteoporos Rep 15:271–282. https://doi.org/10.1007/s11914-017-0371-2

    Article  PubMed  Google Scholar 

  9. Bianchi ML, Mazzanti A, Galbiati E et al (2003) Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 14:761–767. https://doi.org/10.1007/s00198-003-1443-y

    Article  CAS  Google Scholar 

  10. Tsaknakis K, Jäckle K, Lüders KA et al (2022) Reduced bone mineral density in adolescents with Duchenne muscular dystrophy (DMD) and scoliosis. Osteoporos Int 33:2011–2018. https://doi.org/10.1007/s00198-022-06416-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joseph S, Wang C, Bushby K et al (2019) Fractures and linear growth in a nationwide cohort of boys with Duchenne muscular dystrophy with and without glucocorticoid treatment: results from the UK NorthStar Database. JAMA Neurol 76:701–709. https://doi.org/10.1001/jamaneurol.2019.0242

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nagin DS (2014) Group-based trajectory modeling: an overview. Ann Nutr Metab 65:205–210. https://doi.org/10.1159/000360229

    Article  CAS  PubMed  Google Scholar 

  13. Nagin DS, Odgers CL (2010) Group-based trajectory modeling in clinical research. Annu Rev Clin Psychol 6:109–138. https://doi.org/10.1146/annurev.clinpsy.121208.131413

    Article  PubMed  Google Scholar 

  14. Liu C, Yang D-D, Zhang L et al (2022) Bone mineral density assessment by quantitative computed tomography in glucocorticoid-treated boys with Duchenne muscular dystrophy: a linear mixed-effects modeling approach. Front Endocrinol 13:860413. https://doi.org/10.3389/fendo.2022.860413

    Article  Google Scholar 

  15. Lee J-S, Kim K, Jeon YK et al (2020) Effects of traction on interpretation of lumbar bone mineral density in patients with Duchenne muscular dystrophy: a new measurement method and diagnostic criteria based on comparison of dual-energy X-ray absorptiometry and quantitative computed tomography. J Clin Densitom Off J Int Soc Clin Densitom 23:53–62. https://doi.org/10.1016/j.jocd.2018.07.006

    Article  Google Scholar 

  16. Adams JE, Engelke K, Zemel BS et al (2014) Quantitative computer tomography in children and adolescents: the 2013 ISCD Pediatric Official Positions. J Clin Densitom Off J Int Soc Clin Densitom 17:258–274. https://doi.org/10.1016/j.jocd.2014.01.006

    Article  Google Scholar 

  17. Aarestrup J, Blond K, Vistisen D et al (2022) Childhood body mass index trajectories and associations with adult-onset chronic kidney disease in Denmark: a population-based cohort study. PLoS Med 19:e1004098. https://doi.org/10.1371/journal.pmed.1004098

    Article  PubMed  PubMed Central  Google Scholar 

  18. Klijn SL, Weijenberg MP, Lemmens P et al (2017) Introducing the fit-criteria assessment plot – a visualisation tool to assist class enumeration in group-based trajectory modelling. Stat Methods Med Res 26:2424–2436. https://doi.org/10.1177/0962280215598665

    Article  MathSciNet  PubMed  Google Scholar 

  19. Van De Schoot R, Sijbrandij M, Winter SD et al (2017) The GRoLTS-Checklist: guidelines for reporting on latent trajectory studies. Struct Equ Model Multidiscip J 24:451–467. https://doi.org/10.1080/10705511.2016.1247646

    Article  MathSciNet  Google Scholar 

  20. Abrams SA (2003) Normal acquisition and loss of bone mass. Horm Res 60(Suppl 3):71–76. https://doi.org/10.1159/000074505

    Article  CAS  PubMed  Google Scholar 

  21. Tsaknakis K, Jäckle K, Lüders KA et al (2022) Reduced bone mineral density in adolescents with Duchenne muscular dystrophy (DMD) and scoliosis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 33:2011–2018. https://doi.org/10.1007/s00198-022-06416-9

    Article  CAS  Google Scholar 

  22. Bell JM, Shields MD, Watters J et al (2017) Interventions to prevent and treat corticosteroid-induced osteoporosis and prevent osteoporotic fractures in Duchenne muscular dystrophy. Cochrane Database Syst Rev 1:CD010899. https://doi.org/10.1002/14651858.CD010899.pub2

    Article  PubMed  Google Scholar 

  23. Gloss D, Moxley RT, Ashwal S, Oskoui M (2016) Practice guideline update summary: corticosteroid treatment of Duchenne muscular dystrophy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 86:465–472. https://doi.org/10.1212/WNL.0000000000002337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McAdam LC, Rastogi A, Macleod K, Douglas Biggar W (2012) Fat embolism syndrome following minor trauma in Duchenne muscular dystrophy. Neuromuscul Disord NMD 22:1035–1039. https://doi.org/10.1016/j.nmd.2012.07.010

    Article  PubMed  Google Scholar 

  25. Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17:251–267. https://doi.org/10.1016/S1474-4422(18)30024-3

    Article  PubMed  PubMed Central  Google Scholar 

  26. Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol 17:445–455. https://doi.org/10.1016/S1474-4422(18)30026-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Biggar WD, Skalsky A, McDonald CM (2022) Comparing deflazacort and prednisone in Duchenne muscular dystrophy. J Neuromuscul Dis 9:463–476. https://doi.org/10.3233/JND-210776

    Article  PubMed  PubMed Central  Google Scholar 

  28. Karaguzel G, Holick MF (2010) Diagnosis and treatment of osteopenia. Rev Endocr Metab Disord 11:237–251. https://doi.org/10.1007/s11154-010-9154-0

    Article  CAS  PubMed  Google Scholar 

  29. Crabtree NJ, Adams JE, Padidela R et al (2018) Growth, bone health & ambulatory status of boys with DMD treated with daily vs. intermittent oral glucocorticoid regimen. Bone 116:181–186. https://doi.org/10.1016/j.bone.2018.07.019

    Article  CAS  PubMed  Google Scholar 

  30. Rizzoli R, Biver E (2015) Glucocorticoid-induced osteoporosis: who to treat with what agent? Nat Rev Rheumatol 11:98–109. https://doi.org/10.1038/nrrheum.2014.188

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the Sichuan Science and Technology Support Program (2023YFG0284) and the Chengdu Municipal Health Commission Project (21PJ048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaotang Cai or Qiu Wang.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The sentence beginning 'Better management of primary bone mineral density (BMD) may be able to delay or avoid the onset of adverse bone health outcomes in 5 years in children with DMD' in this article, the text 'in 5 years' should have read 'in the ffth year'.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Zhou, H., Xu, H. et al. Different bone health progression patterns and early-stage risk marker in glucocorticoid-treated ambulatory Duchenne muscular dystrophy. Osteoporos Int (2024). https://doi.org/10.1007/s00198-024-07018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00198-024-07018-3

Keywords

Navigation