Skip to main content

Advertisement

Log in

Insights into the bisphosphonate holiday: a preliminary FTIRI study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Summary

Bone composition evaluated by FTIRI analysis of iliac crest biopsies from post-menopausal women treated with alendronate for 10 years, continuously or alendronate for 5 years, followed by a 5-year alendronate-holiday, only differed with the discontinued biopsies having increased cortical crystallinity and heterogeneity of acid phosphate substitution and decreased trabecular crystallinity heterogeneity.

Introduction

Bisphosphonates (BP) are the most commonly used and effective drugs to prevent fragility fractures; however, concerns exist that prolonged use may lead to adverse events. Recent recommendations suggest consideration of a BP “holiday” in individuals taking long-term BP therapy not at high risk of fracture. Data supporting or refuting this recommendation based on bone quality are limited. We hypothesized that a “holiday” of 5 years would cause no major bone compositional changes.

Methods

We analyzed the 31 available biopsies from the FLEX-Long-term Extension of FIT (Fracture Intervention Trial) using Fourier transform infrared imaging (FTIRI). Biopsies from two groups of post-menopausal women, a “Continuously treated group” (N = 16) receiving alendronate for ~ 10 years and a “Discontinued group” (N = 15), alendronate treated for 5 years taking no antiresorptive medication during the following 5 years. Iliac crest bone biopsies were provided at 10 years.

Results

Key FTIRI parameters, mineral-to-matrix ratio, carbonate-to-phosphate ratio, acid phosphate substitution, and collagen cross-link ratio as well as heterogeneity of these parameters were similar for Continuously treated and Discontinued groups in age-adjusted models. The Discontinued group had 2% greater cortical crystallinity (p = 0.01), 31% greater cortical acid phosphate heterogeneity (p = 0.02), and 24% lower trabecular crystallinity heterogeneity (p = 0.02).

Conclusions

Discontinuation of alendronate for 5 years did not affect key FTIRI parameters, supporting the hypothesis that discontinuation would have little impact on bone composition. Modest differences were observed in three parameters that are not likely to affect bone mechanical properties. These preliminary data suggest that a 5-year BP holiday is not harmful to bone composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38(2 Suppl 1):S4–S9. https://doi.org/10.1016/j.bone.2005.11.024

    Article  PubMed  Google Scholar 

  2. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chan CK, Mason A, Cooper C, Dennison E (2016) Novel advances in the treatment of osteoporosis. Br Med Bull 119(1):129–142. https://doi.org/10.1093/bmb/ldw033

    Article  PubMed  PubMed Central  Google Scholar 

  4. Imbert LBA Effects of drugs on bone quality. Clin Rev Bone Mineral Metab 14:167–196

  5. Lewiecki EM (2010) Bisphosphonates for the treatment of osteoporosis: insights for clinicians. Ther Adv Chronic Dis 1(3):115–128. https://doi.org/10.1177/2040622310374783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Khosla S, Bilezikian JP, Dempster DW, Lewiecki EM, Miller PD, Neer RM, Recker RR, Shane E, Shoback D, Potts JT (2012) Benefits and risks of bisphosphonate therapy for osteoporosis. J Clin Endocrinol Metab 97(7):2272–2282. https://doi.org/10.1210/jc.2012-1027

    Article  CAS  PubMed  Google Scholar 

  7. Black DM, Rosen CJ (2016) Postmenopausal Osteoporosis. N Engl J Med 374(21):2096–2097. https://doi.org/10.1056/NEJMc1602599

    PubMed  Google Scholar 

  8. McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, Hanley DA, Kendler DL, Yuen CK, Lewiecki EM (2013) Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med 126(1):13–20. https://doi.org/10.1016/j.amjmed.2012.06.023

    Article  CAS  PubMed  Google Scholar 

  9. Sanderson J, Martyn-St James M, Stevens J, Goka E, Wong R, Campbell F, Selby P, Gittoes N, Davis S (2016) Clinical effectiveness of bisphosphonates for the prevention of fragility fractures: a systematic review and network meta-analysis. Bone 89:52–58. https://doi.org/10.1016/j.bone.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  10. Siris ES, Pasquale MK, Wang Y, Watts NB (2011) Estimating bisphosphonate use and fracture reduction among US women aged 45 years and older, 2001-2008. J Bone Miner Res 26(1):3–11. https://doi.org/10.1002/jbmr.189

    Article  PubMed  Google Scholar 

  11. Zhou J, Ma X, Wang T, Zhai S (2016) Comparative efficacy of bisphosphonates in short-term fracture prevention for primary osteoporosis: a systematic review with network meta-analyses. Osteoporos Int 27(11):3289–3300. https://doi.org/10.1007/s00198-016-3654-z

    Article  CAS  PubMed  Google Scholar 

  12. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2005) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone

  13. LH X, Adams-Huet B, Poindexter JR, Maalouf NM (2016) Determinants of change in bone mineral density and fracture risk during bisphosphonate holiday. Osteoporos Int 27:1701–1708

    Article  Google Scholar 

  14. Adler RA, El-Hajj Fuleihan G, Bauer DC, Camacho PM, Clarke BL, Clines GA, Compston JE, Drake MT, Edwards BJ, Favus MJ, Greenspan SL, McKinney R Jr, Pignolo RJ, Sellmeyer DE (2016) Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 31(1):16–35. https://doi.org/10.1002/jbmr.2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. FDA drug safety communications: ongoing safety review of oral osteoporosis drugs (bisphosphonates) and potential increased risk of esophageal cancer

  16. Freedman E, Dhaliwal K, Estcourt C, Baily G (2004) Symptomatic HIV viraemia during a drug holiday: an argument against treatment interruption? Int J STD AIDS 15(8):564–565. https://doi.org/10.1258/0956462041558131

    Article  PubMed  Google Scholar 

  17. Bala Y, Seeman E (2015) Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int 97(3):308–326. https://doi.org/10.1007/s00223-015-9971-y

    Article  CAS  PubMed  Google Scholar 

  18. Seeman E, Delmas PD (2006) Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med 354(21):2250–2261. https://doi.org/10.1056/NEJMra053077

    Article  CAS  PubMed  Google Scholar 

  19. Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21(7):1106–1112. https://doi.org/10.1359/jbmr.060401

    Article  CAS  PubMed  Google Scholar 

  20. Roschger P, Lombardi A, Misof BM, Maier G, Fratzl-Zelman N, Fratzl P, Klaushofer K (2010) Mineralization density distribution of postmenopausal osteoporotic bone is restored to normal after long-term alendronate treatment: qBEI and sSAXS data from the fracture intervention trial long-term extension (FLEX). J Bone Miner Res 25(1):48–55. https://doi.org/10.1359/jbmr.090702

    Article  CAS  PubMed  Google Scholar 

  21. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2010) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18

    Article  Google Scholar 

  22. Hassler N, Gamsjaeger S, Hofstetter B, Brozek W, Klaushofer K, Paschalis EP (2015) Effects of long-term alendronate treatment on postmenopausal osteoporosis bone material properties. Osteoporos Int 26(1):339–352. https://doi.org/10.1007/s00198-014-2929-5

    Article  CAS  PubMed  Google Scholar 

  23. Misof BM, Fratzl-Zelman N, Paschalis EP, Roschger P, Klaushofer K (2015) Long-term safety of antiresorptive treatment: bone material, matrix and mineralization aspects. Bonekey Rep 4:634. https://doi.org/10.1038/bonekey.2015.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Donnelly E, Meredith DS, Nguyen JT, Boskey AL (2012) Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. J Orthop Res 30(5):700–706. https://doi.org/10.1002/jor.21574

    Article  PubMed  Google Scholar 

  25. Hamrick MW, Skedros JG, Pennington C, McNeil PL (2006) Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6(3):258–263

    CAS  PubMed  Google Scholar 

  26. Jacques RM, Boonen S, Cosman F, Reid IR, Bauer DC, Black DM, Eastell R (2012) Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res 27(8):1627–1634. https://doi.org/10.1002/jbmr.1644

    Article  CAS  PubMed  Google Scholar 

  27. Ensrud KE, Barrett-Connor EL, Schwartz A, Santora AC, Bauer DC, Suryawanshi S, Feldstein A, Haskell WL, Hochberg MC, Torner JC, Lombardi A, Black DM (2004) Randomized trial of effect of alendronate continuation versus discontinuation in women with low BMD: results from the Fracture Intervention Trial long-term extension. J Bone Miner Res 19(8):1259–1269. https://doi.org/10.1359/JBMR.040326

    Article  CAS  PubMed  Google Scholar 

  28. Black DM, Schwartz AV, Ensrud KE, Cauley JA, Levis S, Quandt SA, Satterfield S, Wallace RB, Bauer DC, Palermo L, Wehren LE, Lombardi A, Santora AC, Cummings SR (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 296(24):2927–2938. https://doi.org/10.1001/jama.296.24.2927

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz AV, Bauer DC, Cummings SR, Cauley JA, Ensrud KE, Palermo L, Wallace RB, Hochberg MC, Feldstein AC, Lombardi A, Black DM, Group FR (2010) Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. J Bone Miner Res 25(5):976–982. https://doi.org/10.1002/jbmr.11

    Article  CAS  PubMed  Google Scholar 

  30. Merck (2016) Fosamax tablets prescribing information

  31. Bi X, Grafe I, Ding H, Flores R, Munivez E, Jiang MM, Dawson B, Lee B, Ambrose CG (2017) Correlations between bone mechanical properties and bone composition parameters in mouse models of dominant and recessive osteogenesis imperfecta and the response to anti-TGF-beta treatment. J Bone Miner Res 32(2):347–359. https://doi.org/10.1002/jbmr.2997

    Article  CAS  PubMed  Google Scholar 

  32. Yerramshetty JS, Akkus O (2008) The associations between mineral crystallinity and the mechanical properties of human cortical bone. Bone 42(3):476–482. https://doi.org/10.1016/j.bone.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  33. Boskey AL, Donnelly E, Boskey E, Spevak L, Ma Y, Zhang W, Lappe J, Recker RR (2016) Examining the relationships between bone tissue composition, compositional heterogeneity, and fragility fracture: a matched case-controlled FTIRI study. J Bone Miner Res 31(5):1070–1081. https://doi.org/10.1002/jbmr.2759

    Article  CAS  PubMed  Google Scholar 

  34. Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36(1):6–12. https://doi.org/10.1016/j.bone.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  35. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’Ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49(6):1232–1241. https://doi.org/10.1016/j.bone.2011.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A (2013) Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int 92(5):418–428. https://doi.org/10.1007/s00223-013-9695-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin RB, Burr DB (1989) Structure, function and adaptation of compact bone. Raven Press, New York

    Google Scholar 

  38. Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20(5):793–800. https://doi.org/10.1007/s00198-008-0725-9

    Article  CAS  PubMed  Google Scholar 

  39. Allen MR, Gineyts E, Leeming DJ, Burr DB, Delmas PD (2008) Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra. Osteoporos Int 19(3):329–337. https://doi.org/10.1007/s00198-007-0533-7

    Article  CAS  PubMed  Google Scholar 

  40. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27(3):672–678. https://doi.org/10.1002/jbmr.560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by NIH AR041325 (ALB). The parent study was supported by contracts with Merck & Co. (Rahway, NJ) and was designed jointly by non-Merck investigators and Merck employees. Study drug was manufactured and packaged by Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Schwartz.

Ethics declarations

Conflicts of interest

Boskey, Spevak, Ma, Wang, Bauer, and Schwartz have no conflicts of interest. Black reports conflicts.

Additional information

A. L. Boskey died May 2, 2017

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boskey, A.L., Spevak, L., Ma, Y. et al. Insights into the bisphosphonate holiday: a preliminary FTIRI study. Osteoporos Int 29, 699–705 (2018). https://doi.org/10.1007/s00198-017-4324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4324-5

Keywords