Skip to main content

Advertisement

Log in

Evaluation of trabecular bone score in patients with a distal radius fracture

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We compared bone mineral density (BMD) and trabecular bone score (TBS) in postmenopausal women with a distal radius fracture older than 50 years with controls. Total hip BMD was significantly different, but TBS was not different between two groups, suggesting TBS does not reflect microarchitectural changes of the distal radius.

Introduction

The purpose of this study was to determine whether trabecular bone score (TBS) has additive value for discriminating distal radius fracture (DRF) independent of BMD.

Methods

We compared BMD and TBS in 258 postmenopausal women with a DRF older than 50 years of age with age- and body mass index (BMI)-matched controls who had no history of osteoporotic fracture. BMD was measured at the lumbar spine and hip using dual energy X-ray absorptiometry scans (GE Lunar Prodigy). TBS was calculated on the same spine image. A multivariate logistic regression analysis was used to analyze the odds ratio (OR) for the occurrence of DRF using age, BMI, lumbar spine BMD, total hip BMD, and TBS.

Results

Patients with a DRF had significantly lower BMDs at hip (neck, trochanter and total) than those of controls: 0.752 ± 0.097, 0.622 ± 0.089, and 0.801 ± 0.099 in patients and 0.779 ± 0.092, 0.648 ± 0.089, 0.826 ± 0.101 in controls. However, lumbar spine BMD and TBS were not significantly different between the groups (p = 0.400 and 0.864, respectively). The multivariate analysis indicated that only total hip BMD was significantly associated with the occurrence of DRF (OR, 10.231; 95 % confidence interval, 1.724–60.702; p = 0.010).

Conclusions

TBS was not different between women with a DRF and those without a history of osteoporotic fracture, suggesting that TBS measured at the lumbar spine does not reflect early microarchitectural changes of the distal radius. Only total hip BMD is associated with the risk of DRF in Korean women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig 2

Similar content being viewed by others

References

  1. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 22(3):465–475

    Article  PubMed  Google Scholar 

  2. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ 3rd, Khaltaev N (2008) A reference standard for the description of osteoporosis. Bone 42(3):467–475

    Article  CAS  PubMed  Google Scholar 

  3. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 34(1):195–202

    Article  CAS  PubMed  Google Scholar 

  4. Itoh S, Ohta T, Samejima H, Shinomiya K (1999) Bone mineral density in the distal radius in a healthy Japanese population and in relation to fractures of the distal radius. J Hand Surg (Br) 24(3):334–337

    Article  CAS  Google Scholar 

  5. Lee JO, Chung MS, Baek GH, Oh JH, Lee YH, Gong HS (2010) Age- and site-related bone mineral densities in Korean women with a distal radius fracture compared with the reference Korean female population. J Hand Surg [Am] 35(9):1435–1441

    Article  Google Scholar 

  6. Nordvall H, Glanberg-Persson G, Lysholm J (2007) Are distal radius fractures due to fragility or to falls? A consecutive case-control study of bone mineral density, tendency to fall, risk factors for osteoporosis, and health-related quality of life. Acta Orthop 78(2):271–277

    Article  PubMed  Google Scholar 

  7. Dalle Carbonare L, Giannini S (2004) Bone microarchitecture as an important determinant of bone strength. J Endocrinol Investig 27(1):99–105

    Article  CAS  Google Scholar 

  8. Rubin CD (2005) Emerging concepts in osteoporosis and bone strength. Curr Med Res Opin 21(7):1049–1056

    Article  PubMed  Google Scholar 

  9. Cho YJ, Gong HS, Song CH, Lee YH, Baek GH (2014) Evaluation of physical performance level as a fall risk factor in women with a distal radial fracture. J Bone Joint Surg Am 96(5):361–365

    Article  PubMed  Google Scholar 

  10. Seeman E (2007) Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone 41(3):308–317

    Article  CAS  PubMed  Google Scholar 

  11. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530

    Article  PubMed  Google Scholar 

  12. Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24(1):77–85

    Article  CAS  PubMed  Google Scholar 

  13. Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, Gluer CC, Roux C (2013) Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone 57(1):232–236

    Article  PubMed  Google Scholar 

  14. Krueger D, Fidler E, Libber J, Aubry-Rozier B, Hans D, Binkley N (2014) Spine trabecular bone score subsequent to bone mineral density improves fracture discrimination in women. J Clin Densitom 17(1):60–65

    Article  PubMed  Google Scholar 

  15. Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12(2):170–176

    Article  PubMed  Google Scholar 

  16. Chung KC, Shauver MJ, Birkmeyer JD (2009) Trends in the United States in the treatment of distal radial fractures in the elderly. J Bone Joint Surg Am 91(8):1868–1873

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kanis JA, Johnell O, De Laet C, Johansson H, Oden A, Delmas P, Eisman J, Fujiwara S, Garnero P, Kroger H, McCloskey EV, Mellstrom D, Melton LJ, Pols H, Reeve J, Silman A, Tenenhouse A (2004) A meta-analysis of previous fracture and subsequent fracture risk. Bone 35(2):375–382

    Article  CAS  PubMed  Google Scholar 

  18. Owen RA, Melton LJ 3rd, Ilstrup DM, Johnson KA, Riggs BL (1982) Colles’ fracture and subsequent hip fracture risk. Clin Orthop Relat Res 171:37–43

    Google Scholar 

  19. Rozental TD, Makhni EC, Day CS, Bouxsein ML (2008) Improving evaluation and treatment for osteoporosis following distal radial fractures. A prospective randomized intervention. J Bone Joint Surg Am 90(5):953–961

    Article  PubMed  Google Scholar 

  20. D’Agostino RB Jr (1998) Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med 17(19):2265–2281

    Article  PubMed  Google Scholar 

  21. Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J, Udesky J, Cremers S, Sarquis M, Guo XD, Hans D, Bilezikian JP (2013) Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 98(5):1963–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S (2013) Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int 24(3):991–998

    Article  PubMed  Google Scholar 

  23. Stein EM, Liu XS, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Zhang C, Yin PT, Cosman F, Nieves J, Guo XE, Shane E (2010) Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Miner Res 25(12):2572–2581

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rozental TD, Deschamps LN, Taylor A, Earp B, Zurakowski D, Day CS, Bouxsein ML (2013) Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture. J Bone Joint Surg Am 95(7):633–642

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42(4):775–787

    Article  PubMed  Google Scholar 

  26. Xie X, Barenholdt O (2001) Bone density and geometric properties of the distal radius in displaced and undisplaced Colles’ fractures: quantitative CT in 70 women. Acta Orthop Scand 72(1):62–66

    Article  CAS  PubMed  Google Scholar 

  27. Webber T, Patel SP, Pensak M, Fajolu O, Rozental TD, Wolf JM (2015) Correlation between distal radial cortical thickness and bone mineral density. J Hand Surg 40(3):493–499

    Article  Google Scholar 

  28. Dhainaut A, Hoff M, Syversen U, Haugeberg G (2013) Cortical hand bone porosity and its association with distal radius fracture in middle aged and elderly women. PLoS One 8(7):e68405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bouxsein ML, Palermo L, Yeung C, Black DM (2002) Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the study of osteoporotic fractures. Osteoporos Int 13(5):358–365

    Article  CAS  PubMed  Google Scholar 

  30. Dhainaut A, Daibes K, Odinsson A, Hoff M, Syversen U, Haugeberg G (2014) Exploring the relationship between bone density and severity of distal radius fragility fracture in women. J Orthop Surg Res 9:57

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cohen A, Dempster DW, Muller R, Guo XE, Nickolas TL, Liu XS, Zhang XH, Wirth AJ, van Lenthe GH, Kohler T, McMahon DJ, Zhou H, Rubin MR, Bilezikian JP, Lappe JM, Recker RR, Shane E (2010) Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int 21(2):263–273

    Article  CAS  PubMed  Google Scholar 

  32. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ 3rd (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging: relationship to spinal osteoporosis. J Clin Invest 67(2):328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD (1997) Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res 12(4):683–690

    Article  CAS  PubMed  Google Scholar 

  34. Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, Nevitt MC, Fox KM, Cummings SR (1995) Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res 10(11):1778–1787

    Article  CAS  PubMed  Google Scholar 

  35. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23(2):205–214

    Article  PubMed  Google Scholar 

  36. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26(11):2762–2769

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a research fund (2015R1D1A1A01058562) from National Research Foundation of Korea. We also thank the Korean Society for Bone and Mineral Research for providing the software program of TBS for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Gong.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y.H., Gong, H.S., Gang, D.H. et al. Evaluation of trabecular bone score in patients with a distal radius fracture. Osteoporos Int 27, 3559–3565 (2016). https://doi.org/10.1007/s00198-016-3686-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3686-4

Keywords

Navigation