Skip to main content

Advertisement

Log in

Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

A role for gut hormone in bone physiology has been suspected. We evidenced alterations of microstructural morphology (trabecular and cortical) and bone strength (both at the whole-bone - and tissue-level) in double incretin receptor knock-out (DIRKO) mice as compared to wild-type littermates. These results support a role for gut hormones in bone physiology.

Introduction

The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), have been shown to control bone remodeling and strength. However, lessons from single incretin receptor knock-out mice highlighted a compensatory mechanism induced by elevated sensitivity to the other gut hormone. As such, it is unclear whether the bone alterations observed in GIP or GLP-1 receptor deficient animals resulted from the lack of a functional gut hormone receptor, or by higher sensitivity for the other gut hormone. The aims of the present study were to investigate the bone microstructural morphology, as well as bone tissue properties, in double incretin receptor knock-out (DIRKO) mice.

Methods

Twenty-six-week-old DIRKO mice were age- and sex-matched with wild-type (WT) littermates. Bone microstructural morphology was assessed at the femur by microCT and quantitative X-ray imaging, while tissue properties were investigated by quantitative backscattered electron imaging and Fourier-transformed infrared microscopy. Bone mechanical response was assessed at the whole-bone- and tissue-level by 3-point bending and nanoindentation, respectively.

Results

As compared to WT animals, DIRKO mice presented significant augmentations in trabecular bone mass and trabecular number whereas bone outer diameter, cortical thickness, and cortical area were reduced. At the whole-bone-level, yield stress, ultimate stress, and post-yield work to fracture were significantly reduced in DIRKO animals. At the tissue-level, only collagen maturity was reduced by 9 % in DIRKO mice leading to reductions in maximum load, hardness, and dissipated energy.

Conclusions

This study demonstrated the critical role of gut hormones in controlling bone microstructural morphology and tissue properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elnenaei MO, Musto R, Alaghband-Zadeh J, Moniz C, Le Roux CW (2010) Postprandial bone turnover is independent of calories above 250 kcal. Ann Clin Biochem 47:318–320

    Article  CAS  PubMed  Google Scholar 

  2. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsboll T, Hartmann B, Henriksen EE, Byrjalsen I, Krarup T, Holst JJ, Christiansen C (2003) Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res 18:2180–2189

    Article  CAS  PubMed  Google Scholar 

  3. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157

    Article  CAS  PubMed  Google Scholar 

  4. Thorens B (1992) Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. PNAS 89:8641–8645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI (1993) Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133:2861–2870

    CAS  PubMed  Google Scholar 

  6. Gaudin-Audrain C, Irwin N, Mansur S, Thorens B, Flatt PR, Basle MF, Chappard D, Mabilleau G (2013) Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone mass and quality in mice. Bone 53:221–230

    Article  CAS  PubMed  Google Scholar 

  7. Mieczkowska A, Irwin N, Flatt PR, Chappard D, Mabilleau G (2013) Glucose-dependent insulinotropic polypeptide (GIP) receptor deletion leads to reduced bone strength and quality. Bone 56:337–342

    Article  CAS  PubMed  Google Scholar 

  8. Tsukiyama K, Yamada Y, Yamada C et al (2006) Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol 20:1644–1651

    Article  CAS  PubMed  Google Scholar 

  9. Xie D, Cheng H, Hamrick M et al (2005) Glucose-dependent insulinotropic polypeptide receptor knockout mice have altered bone turnover. Bone 37:759–769

    Article  CAS  PubMed  Google Scholar 

  10. Xie D, Zhong Q, Ding KH et al (2007) Glucose-dependent insulinotropic peptide-overexpressing transgenic mice have increased bone mass. Bone 40:1352–1360

    Article  CAS  PubMed  Google Scholar 

  11. Mabilleau G, Mieczkowska A, Irwin N, Flatt PR, Chappard D (2013) Optimal bone mechanical and material properties require a functional glucagon-like peptide-1 receptor. J Endocrinol 219:59–68

    Article  CAS  PubMed  Google Scholar 

  12. Flamez D, Van Breusegem A, Scrocchi LA, Quartier E, Pipeleers D, Drucker DJ, Schuit F (1998) Mouse pancreatic beta-cells exhibit preserved glucose competence after disruption of the glucagon-like peptide-1 receptor gene. Diabetes 47:646–652

    Article  CAS  PubMed  Google Scholar 

  13. Pamir N, Lynn FC, Buchan AM et al (2003) Glucose-dependent insulinotropic polypeptide receptor null mice exhibit compensatory changes in the enteroinsular axis. Am J Physiol Endocrinol Metab 284:E931–E939

    CAS  PubMed  Google Scholar 

  14. Pederson RA, Satkunarajah M, McIntosh CH, Scrocchi LA, Flamez D, Schuit F, Drucker DJ, Wheeler MB (1998) Enhanced glucose-dependent insulinotropic polypeptide secretion and insulinotropic action in glucagon-like peptide 1 receptor -/- mice. Diabetes 47:1046–1052

    Article  CAS  PubMed  Google Scholar 

  15. Preitner F, Ibberson M, Franklin I et al (2004) Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J Clin Invest 113:635–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Scrocchi LA, Brown TJ, MaClusky N, Brubaker PL, Auerbach AB, Joyner AL, Drucker DJ (1996) Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat Med 2:1254–1258

    Article  CAS  PubMed  Google Scholar 

  17. Flatt PR, Bailey CJ (1981) Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20:573–577

    Article  CAS  PubMed  Google Scholar 

  18. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  19. Bassett JH, van der Spek A, Gogakos A, Williams GR (2012) Quantitative X-ray imaging of rodent bone by Faxitron. Methods Mol Biol 816:499–506

    Article  CAS  PubMed  Google Scholar 

  20. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ritchie RO, Koester KJ, Ionova S, Yao W, Lane NE, Ager JW 3rd (2008) Measurement of the toughness of bone: a tutorial with special reference to small animal studies. Bone 43:798–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  23. McNamara LM, Ederveen AG, Lyons CG, Price C, Schaffler MB, Weinans H, Prendergast PJ (2006) Strength of cancellous bone trabecular tissue from normal, ovariectomized and drug-treated rats over the course of ageing. Bone 39:392–400

    Article  CAS  PubMed  Google Scholar 

  24. Blouin S, Basle MF, Chappard D (2008) Interactions between microenvironment and cancer cells in two animal models of bone metastasis. Br J Cancer 98:809–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Farlay D, Duclos ME, Gineyts E et al (2011) The ratio 1660/1690 cm(-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS ONE 6:e28736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    Article  CAS  PubMed  Google Scholar 

  27. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  CAS  Google Scholar 

  28. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  CAS  PubMed  Google Scholar 

  29. Hansotia T, Baggio LL, Delmeire D, Hinke SA, Yamada Y, Tsukiyama K, Seino Y, Holst JJ, Schuit F, Drucker DJ (2004) Double incretin receptor knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregulatory actions of DPP-IV inhibitors. Diabetes 53:1326–1335

    Article  CAS  PubMed  Google Scholar 

  30. Gremlich S, Porret A, Hani EH, Cherif D, Vionnet N, Froguel P, Thorens B (1995) Cloning, functional expression, and chromosomal localization of the human pancreatic islet glucose-dependent insulinotropic polypeptide receptor. Diabetes 44:1202–1208

    Article  CAS  PubMed  Google Scholar 

  31. Yaqub T, Tikhonova IG, Lattig J, Magnan R, Laval M, Escrieut C, Boulegue C, Hewage C, Fourmy D (2010) Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol Pharmacol 77:547–558

    Article  CAS  PubMed  Google Scholar 

  32. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, Tanaka K, Drucker DJ, Seino Y, Inagaki N (2008) The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology 149:574–579

    Article  CAS  PubMed  Google Scholar 

  33. Bouxsein ML, Myers KS, Shultz KL, Donahue LR, Rosen CJ, Beamer WG (2005) Ovariectomy-induced bone loss varies among inbred strains of mice. J Bone Miner Res 20:1085–1092

    Article  PubMed  Google Scholar 

  34. Judex S, Garman R, Squire M, Donahue LR, Rubin C (2004) Genetically based influences on the site-specific regulation of trabecular and cortical bone morphology. J Bone Miner Res 19:600–606

    Article  PubMed  Google Scholar 

  35. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD (2011) Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 11:12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nuche-Berenguer B, Portal-Nunez S, Moreno P, Gonzalez N, Acitores A, Lopez-Herradon A, Esbrit P, Valverde I, Villanueva-Penacarrillo ML (2010) Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 225:585–592

    Article  CAS  PubMed  Google Scholar 

  37. Bates HE, Campbell JE, Ussher JR, Baggio LL, Maida A, Seino Y, Drucker DJ (2012) Gipr is essential for adrenocortical steroidogenesis; however, corticosterone deficiency does not mediate the favorable metabolic phenotype of Gipr(-/-) mice. Diabetes 61:40–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bjerre Knudsen L, Madsen LW, Andersen S et al (2010) Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology 151:1473–1486

    Article  PubMed  Google Scholar 

  39. Madsen LW, Knauf JA, Gotfredsen C et al (2012) GLP-1 receptor agonists and the thyroid: C-cell effects in mice are mediated via the GLP-1 receptor and not associated with RET activation. Endocrinology 153:1538–1547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bullock BP, Heller RS, Habener JF (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137:2968–2978

    CAS  PubMed  Google Scholar 

  41. Zhou H, Yamada Y, Tsukiyama K et al (2005) Gastric inhibitory polypeptide modulates adiposity and fat oxidation under diminished insulin action. Biochem Biophys Res Comm 335:937–942

    Article  CAS  PubMed  Google Scholar 

  42. Bousson V, Peyrin F, Bergot C, Hausard M, Sautet A, Laredo JD (2004) Cortical bone in the human femoral neck: three-dimensional appearance and porosity using synchrotron radiation. J Bone Miner Res 19:794–801

    Article  PubMed  Google Scholar 

  43. Cooper DM, Turinsky AL, Sensen CW, Hallgrimsson B (2003) Quantitative 3D analysis of the canal network in cortical bone by micro-computed tomography. Anat Rec Part B, New Anat 274:169–179

    Article  CAS  Google Scholar 

  44. Currey JD (2003) The many adaptations of bone. J Biomech 36:1487–1495

    Article  CAS  PubMed  Google Scholar 

  45. Schneider P, Stauber M, Voide R, Stampanoni M, Donahue LR, Muller R (2007) Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 22:1557–1570

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to N Gaborit and G Brossard for their help with microCT. This work was supported by grants from the Bioregos2 Program and the University of Ulster Proof of Principle Funding Program.

Conflicts of interest

Aleksandra Mieczkowska, Sity Mansur, Beatrice Bouvard, Peter R Flatt, Bernard Thorens, Nigel Irwin, Daniel Chappard, and Guillaume Mabilleau have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mabilleau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mieczkowska, A., Mansur, S., Bouvard, B. et al. Double incretin receptor knock-out (DIRKO) mice present with alterations of trabecular and cortical micromorphology and bone strength. Osteoporos Int 26, 209–218 (2015). https://doi.org/10.1007/s00198-014-2845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2845-8

Keywords

Navigation