Skip to main content

Advertisement

Log in

Additive effects of antiresorptive agents and exercise on lumbar spine bone mineral density in adults with low bone mass: a meta-analysis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Exercise has been recommended to increase bone mass and prevent osteoporosis. While current treatment of osteoporosis mainly involves the use of antiresorptive agents, it is unclear whether there are any additive effects in improving bone mass when antiresorptive agents and exercise are jointly used.

Methods

A structured and comprehensive search of databases was undertaken along with hand searching of key journals and reference lists. The combined interventions of antiresorptive agents and exercise were examined for their additive effects on lumbar spine bone mineral density (BMD) among adults with low bone mass. Trial quality was assessed using the Jadad quality score. Study outcomes for analysis, absolute change (grams per square centimeter) or relative change (in percent) in BMD, at the lumbar spine were compared by calculating standardized mean difference (SMD) using fixed and random effect models.

Results

Seven randomized controlled trials (RCT) met the predetermined inclusion criteria. The increase in lumbar spine BMD of the combined-intervention group was significantly greater than that of the antiresorptive agent-alone group (fixed effect model: SMD = 0.55; 95 % confidence interval (CI) = 0.36, 0.75; overall effect Z-value = 5.51; p < 0.00001). Subgroup analyses also showed consistent results. Methodological quality of most included studies was scored 3 by the Jadad criterion, and publication bias was slight according to funnel plots.

Conclusion

It was found that combining antiresorptive agents with exercise had additive effects on improving lumbar spine bone mass gains in adults with low bone mass. To verify the additive effects further, more RCTs with longer duration and larger sample sizes are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94: 646–650. doi:10.1016/0002-9343(93)90218-E

  2. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287. doi:10.1016/S0140-6736(10)62349-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Black DM, Cummings SR, Karpf DB (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541. doi:10.1016/S0140-6736(96)07088-2

    Article  CAS  PubMed  Google Scholar 

  4. Lieberman U, Weiss SR, Broll J (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. N Engl J Med 333:1437–1443

    Article  Google Scholar 

  5. Harris ST, Watts NB, Genant HK, McKeever CD, Hangartner T et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282:1344–1352

    Article  CAS  PubMed  Google Scholar 

  6. Rabenda V, Mertens R, Fabri V, Vanoverloop J, Sumkay F et al (2008) Adherence to bisphosphonates therapy and hip fracture risk in osteoporotic women. Osteoporos Int 19(6):811–818. doi:10.1007/s00198-007-0506-x

    Article  CAS  PubMed  Google Scholar 

  7. Cramer JA, Gold D, Silverman S, Lewiecki EM (2007) A systematic review of persistence and compliance with bisphosphonates for osteoporosis. Osteoporos Int 18:1023–1031. doi:10.1007/s00198-006-0322-8

    Article  CAS  PubMed  Google Scholar 

  8. Kennel KA, Drake MT (2009) Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc 84(7):632–637. doi:10.1016/S0025-6196(11)60752-0, quiz 638

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Woo SB, Hellstein JW, Kalmar JR (2006) Systematic review bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144(10):753–761

    Article  CAS  PubMed  Google Scholar 

  10. Odvina CV, Zerwekh JE, Rao DS, Maalouf N, Gottschalk FA, Pak CY (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301. doi:10.1210/jc.2004-0952

    Article  CAS  PubMed  Google Scholar 

  11. Lenart BA, Lorich DG, Lane JM (2008) Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med 358(12):1304–1306. doi:10.1056/NEJMc0707493

    Article  CAS  PubMed  Google Scholar 

  12. Dalsky GP, Stocke KS, Eshani AA, Slatopolsky WC, Lee WC, Birge SJ (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108(6):824–828

    Article  CAS  PubMed  Google Scholar 

  13. Howe TE, Shea B, Dawson LJ, Downie F, Murray A et al (2011) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 7, CD000333. doi:10.1002/14651858

    PubMed  Google Scholar 

  14. de Kam D, Smulders E, Weerdesteyn V, Smits-Engelsman BC (2009) Exercise interventions to reduce fall-related fractures and their risk factors in individuals with low bone density: a systematic review of randomized controlled trials. Osteoporos Int 20(12):2111–2125. doi:10.1007/s00198-009-0938-6

    Article  PubMed  Google Scholar 

  15. Martyn-St James M, Carroll S (2006) High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 17(8):1225–1240. doi:10.1007/s00198-006-0083-4

    Article  CAS  PubMed  Google Scholar 

  16. Nelson ME, Fiatarone MA, Morganti CM, Trice I, Greenberg RA, Evans WJ (1994) Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. JAMA 272:1909–1914

    Article  CAS  PubMed  Google Scholar 

  17. Prince RL, Smith M, Dick IM et al (1991) Prevention of postmenopausal osteoporosis—a comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med 325:1189–1195

    Article  CAS  PubMed  Google Scholar 

  18. Jones HH, Priest JD, Hayes WC, Tichenor CC, Nagel DA (1977) Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 59:204–208. doi:10.2106/JBJS.G.00853

    CAS  PubMed  Google Scholar 

  19. Raab-Cullen DM, Thiede MA, Peterson DN, Kimmel DB, Recker RR (1994) Mechanical loading stimulates rapid changes in periosteal gene expression. Calcif Tissue Int 55:473–478. doi:10.1007/BF00298562

    Article  CAS  PubMed  Google Scholar 

  20. Haapasalo H, Sievanen H, Kannus P, Heinonen A, Oja P, Vuori I (1996) Dimensions and estimated mechanical characteristics of the humerus after long-term tennis loading. J Bone Miner Res 11(6):864–872

    Article  CAS  PubMed  Google Scholar 

  21. Braith RW, Magyari PM, Fulton MN, Aranda J, Walker T, Hill JA (2003) Resistance exercise training and alendronate reverse glucocorticoid-induced osteoporosis in heart transplant recipients. J Heart Lung Transplant 22(10):1082–1090. doi:10.1016/S1053-2498(02)01184-1

    Article  PubMed  Google Scholar 

  22. Braith RW, Conner JA, Fulton MN, Lisor CF, Casey DP, Howe KS, Baz MA (2007) Comparison of alendronate vs alendronate plus mechanical loading as prophylaxis for osteoporosis in lung transplant recipients: a pilot study. J Heart Lung Transplant 26(2):132–137. doi:10.1016/j.healun.2006.11.004

    Article  PubMed  Google Scholar 

  23. Notelovitz M, Martin D, Tesar R, Khan FY, Probart C et al (1991) Estrogen therapy and variable-resistance weight training increase bone mineral in surgically menopausal women. J Bone Miner Res 6(6):583–590

    Article  CAS  PubMed  Google Scholar 

  24. Villareal DT, Binder EF, Yarasheski KE, Williams DB, Brown M et al (2003) Effects of exercise training added to ongoing hormone replacement therapy on bone mineral density in frail elderly women. J Am Geriatr Soc 51(7):985–990. doi:10.1046/j.1365-2389.2003.51312.x

    Article  PubMed  Google Scholar 

  25. Iwamoto J, Takeda T, Sato Y, Uzawa M (2005) Effect of whole-body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in post-menopausal osteoporotic women treated with alendronate. Aging Clin Exp Res 17(2):157–163

    Article  CAS  PubMed  Google Scholar 

  26. Waltman NL, Twiss JJ, Ott CD, Gross GJ, Lindsey AM et al (2010) The effect of weight training on bone mineral density and bone turnover in postmenopausal breast cancer survivors with bone loss: a 24-month randomized controlled trial. Osteoporos Int 21(8):1361–1369. doi:10.1007/s00198-009-1083-y

    Article  CAS  PubMed  Google Scholar 

  27. Maddalozzo GF, Widrick JJ, Cardinal BJ, Winters-Stone KM, Hoffman MA, Snow CM (2007) The effects of hormone replacement therapy and resistance training on spine bone mineral density in early postmenopausal women. Bone 40(5):1244–1251. doi:10.1016/j.bone.2006.12.059

    Article  CAS  PubMed  Google Scholar 

  28. Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP et al (2010) 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 182:1864–1873. doi:10.1503/cmaj.100771

    Article  PubMed Central  PubMed  Google Scholar 

  29. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17:1–12. doi:10.1016/0197-2456(95)00134-4

    Article  CAS  PubMed  Google Scholar 

  30. Review Manager (RevMan) Version 5.1. Computer program (2011) The Nordic Cochrane Centre. Cochrane Collaboration, Copenhagen

    Google Scholar 

  31. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Adachi JD (1996) Current treatment options for osteoporosis. J Rheumatol 23:11–14

    Google Scholar 

  33. Yeh JK, Aloia JF, Chen MM et al (1993) Influence of exercise on cancellous bone of the aged female rat. J Bone Miner Res 8:1117–1125

    Article  CAS  PubMed  Google Scholar 

  34. Chen MM, Yeh JK, Aloia JF et al (1994) Effect of treadmill exercise on tibial cortical bone in aged female rats: a histomorphometry and dual energy X-ray absorptiometry study. Bone 15:313–319

    Article  CAS  PubMed  Google Scholar 

  35. Uusi-Rasi K, Kannus P, Cheng S, Sievänen H, Pasanen M et al (2003) Effect of alendronate and exercise on bone and physical performance of postmenopausal women: a randomized controlled trial. Bone 33(1):132–143. doi:10.1016/S8756-3282(03)00082-6

    Article  CAS  PubMed  Google Scholar 

  36. van Schoor NM, Deville WL, Bouter LM, Lips P (2002) Acceptance and compliance with external hip protectors: a systematic review of the literature. Osteoporos Int 13:917–924. doi:10.1007/s001980200128

    Article  PubMed  Google Scholar 

  37. Nishimura J, Ikuyama S (2000) Glucocorticoid-induced osteoporosis: pathogenesis and management. J Bone Miner Metab 18(6):350–352. doi:10.1007/s007740070008

    Article  CAS  PubMed  Google Scholar 

  38. Kelley GA, Kelley KS (2004) Efficacy of resistance exercise on lumbar spine and femoral neck bone mineral density in premenopausal women: a meta-analysis of individual patient data. J Women’s Health (Larchmt) 13(3):293–300

    Article  Google Scholar 

  39. Pruitt LA, Taaffe DR, Marcus R (1995) Effects of a one-year high-intensity versus low-intensity resistance training program on bone mineral density in older women. J Bone Miner Res 10:1788–1795

    Article  CAS  PubMed  Google Scholar 

  40. Cummings SR, Black DM, Nevitt MC (1993) Bone density at various sites for prediction of hip fractures. Lancet 341:72–75. doi:10.1016/0140-6736(93)92555-8

    Article  CAS  PubMed  Google Scholar 

  41. Lespessailles E, Jaffré C, Beaupied H, Nanyan P, Dolléans E et al (2009) Does exercise modify the effects of zoledronic acid on bone mass, microarchitecture, biomechanics, and turnover in ovariectomized rats. Calcif Tissue Int 85(2):146–157. doi:10.1007/s00223-009-9269-z

    Article  CAS  PubMed  Google Scholar 

  42. Jee WS, Tian XY (2005) The benefit of combining non-mechanical agents with mechanical loading: a perspective based on the Utah Paradigm of Skeletal Physiology. J Musculoskelet Neuronal Interact 5(2):110–118

    CAS  PubMed  Google Scholar 

  43. Sterne JAC, Egger M, Davey Smith G (2001) Investigating and dealing with publication and other biases. In: Egger M, Davey Smith G, Altman DG (eds) Systematic reviews in health care. Meta-analysis in context. BMJ Publishing Group, London, UK, pp 189–208

    Chapter  Google Scholar 

  44. Begg CB, Cho M, Eastwood S, Horton R, Moher D et al (1996) Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA 276(8):637–639

    Article  CAS  PubMed  Google Scholar 

  45. Polidoulis I, Beyene J, Cheung AM (2012) The effect of exercise on pQCT parameters of bone structure and strength in postmenopausal women—a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 23(1):39–51. doi:10.1007/s00198-011-1734-7

    Article  CAS  PubMed  Google Scholar 

  46. Montori VM, Guyatt GH (2001) Intention-to-treat principle. CMAJ 165(10):1339–1341

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Yuan.

Additional information

Dr. Rui Gao and Dr. Jiehong Zhang contributed equally to this work and should be considered as co-first authors.

Dr. Peng Cao and Prof. Wen Yuan contributed equally to this work and should be considered as co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Gao, R., Cao, P. et al. Additive effects of antiresorptive agents and exercise on lumbar spine bone mineral density in adults with low bone mass: a meta-analysis. Osteoporos Int 25, 1585–1594 (2014). https://doi.org/10.1007/s00198-014-2644-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2644-2

Keywords

Navigation