Skip to main content
Log in

Regional variations of vertebral trabecular bone microstructure with age and gender

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The vertebral trabecular bone has a complex three-dimensional (3D) microstructure, with inhomogeneous morphology. A thorough understanding of regional variations in the microstructural properties is crucial for evaluating age- and gender-related bone loss of the vertebra, and may help us to gain more insight into the mechanism of the occurrence of vertebral osteoporosis and the related fracture risks.

Introduction

The aim of this study was to identify regional differences in 3D microstructure of vertebral trabecular bone with age and gender, using micro-computed tomography (micro-CT) and scanning electron microscopy (SEM).

Methods

We used 56 fourth lumbar vertebral bodies from 28 women and men (57–98 years of age) cadaver donors. The subjects were chosen to give an even age and gender distribution. Both women and men were divided into three age groups, 62-, 77- and 92-year-old groups. Five cubic specimens were prepared from anterosuperior, anteroinferior, central, posterosuperior and posteroinferior regions at sagittal section. Bone specimens were examined by using micro-CT and SEM.

Results

Reduced bone volume (BV/TV), trabecular number (Tb.N) and connectivity density (Conn.D), and increased structure model index (SMI) were found between ages 62 and 77 years, and between ages 77 and 92 years. As compared with women, men had higher Tb.N in the 77-year-old group and higher Conn.D in the 62- and 77-year-old groups. The central and anterosuperior regions had lower BV/TV and Conn.D than their corresponding posteroinferior region. Increased resorbing surfaces, perforated or disconnected trabeculae and microcallus formations were found with age.

Conclusion

Vertebral trabeculae are microstructurally heterogeneous. Decreases in BV/TV and Conn.D with age are similar in women and men. Significant differences between women and men are observed at some microstructural parameters. Age-related vertebral trabecular bone loss may be caused by increased activity of resorption. These findings illustrate potential mechanisms underlying vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ettinger MP (2003) Aging bone and osteoporosis: strategies for preventing fractures in the elderly. Arch Intern Med 163:2237–2246

    Article  PubMed  Google Scholar 

  2. Fechtenbaum J, Cropet C, Kolta S et al (2005) The severity of vertebral fractures and health-related quality of life in osteoporotic postmenopausal women. Osteoporos Int 16:2175–2179

    Article  PubMed  CAS  Google Scholar 

  3. Hui SL, Slemenda CW, Johnston CC Jr (1988) Age and bone mass as predictors of fracture in a prospective study. J Clin Invest 81:1804–1809

    Article  PubMed  CAS  Google Scholar 

  4. Burr DB, Forwood MR, Fyhrie DP et al (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12:6–15

    Article  PubMed  CAS  Google Scholar 

  5. Stauber M, Müller R (2006) Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int 17:616–626

    Article  PubMed  CAS  Google Scholar 

  6. Legrand E, Chappard D, Pascaretti C et al (2000) Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res 15:13–19

    Article  PubMed  CAS  Google Scholar 

  7. Ding M (2000) Age variations in the properties of human tibial trabecular bone and cartilage. Acta Orthop Scand Suppl 292:1–45

    Article  PubMed  CAS  Google Scholar 

  8. Ding M, Odgaard A, Linde F et al (2002) Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 20:615–621

    Article  PubMed  Google Scholar 

  9. Kinney JH, Ladd AJ (1998) The relationship between three-dimensional connectivity and the elastic properties of trabecular bone. J Bone Miner Res 13:839–845

    Article  PubMed  CAS  Google Scholar 

  10. Hordon LD, Raisi M, Aaron JE et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27:271–276

    Article  PubMed  CAS  Google Scholar 

  11. Adams MA, Pollintine P, Tobias JH et al (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21:1409–1416

    Article  PubMed  Google Scholar 

  12. Thomsen JS, Ebbesen EN, Mosekilde L (2002) Zone-dependent changes in human vertebral trabecular bone: clinical implications. Bone 30:664–669

    Article  PubMed  Google Scholar 

  13. Gong H, Zhang M, Yeung HY et al (2005) Regional variations in microstructural properties of vertebral trabeculae with aging. J Bone Miner Metab 23:174–180

    Article  PubMed  Google Scholar 

  14. Gong H, Zhang M, Qin L et al (2006) Regional variations in microstructural properties of vertebral trabeculae with structural groups. Spine 31:24–32

    Article  PubMed  Google Scholar 

  15. Hulme PA, Boyd SK, Ferguson SJ (2007) Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone 41:946–957

    Article  PubMed  CAS  Google Scholar 

  16. Thomsen JS, Ebbesen EN, Mosekilde L (2002) Predicting human vertebral bone strength by vertebral static histomorphometry. Bone 30:502–508

    Article  PubMed  CAS  Google Scholar 

  17. Sigurdsson G, Aspelund T, Chang M et al (2006) Increasing sex difference in bone strength in old age: the Age, Gene/Environment Susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone 39:644–651

    Article  PubMed  Google Scholar 

  18. Bouxsein ML, Melton LJ 3rd, Riggs BL et al (2006) Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 21:1475–1482

    Article  PubMed  Google Scholar 

  19. Jayasinghe JAP, Jones SJ, Boyde A (1993) Scanning electron microscopy of human lumbar vertebral bone surfaces. Virchows Arch A Pathol Anat 422:25–34

    Article  CAS  Google Scholar 

  20. Mosekilde L (1993) Vertebral structure and strength in vivo and in vitro. Calcif Tissue Int 53(Suppl.):S121–S126

    Article  PubMed  Google Scholar 

  21. Washimi Y, Ito M, Morishima Y et al (2007) Effect of combined humanPTH(1–34) and calcitonin treatment in ovariectomized rats. Bone 41:786–793

    Article  PubMed  CAS  Google Scholar 

  22. Joo YI, Sone T, Fukunaga M et al (2003) Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 33:485–493

    Article  PubMed  Google Scholar 

  23. Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  24. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph 21:163–169

    Article  Google Scholar 

  25. Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  26. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328

    Article  PubMed  CAS  Google Scholar 

  27. Harrigan TP, Mann RW (1984) Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767

    Article  CAS  Google Scholar 

  28. Hildebrand T, Laib A, Müller R et al (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  29. Chen H, Shoumura S, Emura S (2004) Ultrastructural changes in bones of the senescence-accelerated mouse (SAMP6): a murine model for senile osteoporosis. Histol Histopathol 19:677–685

    PubMed  CAS  Google Scholar 

  30. Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure-biomechanical consequences. Bone 10:425–432

    Article  PubMed  CAS  Google Scholar 

  31. Thomsen JS, Ebbesen EN, Mosekilde LI (2002) Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31:136–142

    Article  PubMed  CAS  Google Scholar 

  32. Mosekilde L (1988) Age-related changes in vertebral trabecular bone architecture–assessed by a new method. Bone 9:247–250

    Article  PubMed  CAS  Google Scholar 

  33. Parfitt AM (1984) Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcif Tissue Int 36(Suppl 1):S123–S128

    Article  PubMed  Google Scholar 

  34. Grote HJ, Amling M, Vogel M et al (1995) Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age. Bone 16:301–308

    Article  PubMed  CAS  Google Scholar 

  35. Thomsen JS, Ebbesen EN, Mosekilde L (2002) Static histomorphometry of human iliac crest and vertebral trabecular bone: a comparative study. Bone 30:267–274

    Article  PubMed  CAS  Google Scholar 

  36. Eckstein F, Fischbeck M, Kuhn V et al (2004) Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 35:364–374

    Article  PubMed  Google Scholar 

  37. Bergot C, Laval-Jeantet AM, Prêteux F et al (1988) Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Res 43:143–149

    Article  CAS  Google Scholar 

  38. McCalden RW, McGeough JA, Court-Brown CM (1997) Age-related changes in the compressive strength of cancellous bone. The relative importance of changes in density and trabecular architecture. J Bone Joint Surg Am 79:421–427

    PubMed  CAS  Google Scholar 

  39. Weinstein RS, Hutson MS (1987) Decreased trabecular width and increased trabecular spacing contribute to bone loss with aging. Bone 8:137–142

    Article  PubMed  CAS  Google Scholar 

  40. Parfitt AM, Mathaws CHE, Villaneuva AR et al (1983) Relationship between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–1409

    Article  PubMed  CAS  Google Scholar 

  41. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    Article  PubMed  CAS  Google Scholar 

  42. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35:170–189

    Article  PubMed  CAS  Google Scholar 

  43. Fyhrie DP, Lang SM, Hoshaw SJ et al (1995) Human vertebral cancellous bone surface distribution. Bone 17:287–291

    Article  PubMed  CAS  Google Scholar 

  44. Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1998) Vertebral bone density evaluated by dual-energy X-ray absorptiometry and quantitative computed tomography in vitro. Bone 23:283–290

    Article  PubMed  CAS  Google Scholar 

  45. Khosla S, Riggs BL, Atkinson EJ et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131

    Article  PubMed  Google Scholar 

  46. Eckstein F, Matsuura M, Kuhn V et al (2007) Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res 22:817–824

    Article  PubMed  Google Scholar 

  47. Melton LJ 3rd (1995) Epidemiology of fractures. In: Riggs BL, Melton LJ (eds) Osteoporosis: etiology, diagnosis and management. 2nd ed. Lippicott-Raven, Philadelphia, pp 225–249

    Google Scholar 

  48. Banse X, Devogelaer JP, Munting E et al (2001) Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone 28:563–571

    Article  PubMed  CAS  Google Scholar 

  49. Silva MJ, Keaveny TM, Hayes WC (1998) Computed tomography-based finite element analysis predicts failure loads and fracture patterns for vertebral sections. J Orthop Res 16:300–308

    Article  PubMed  CAS  Google Scholar 

  50. Grant JP, Oxland TR, Dvorak MF (2001) Mapping the structural properties of the lumbosacral vertebral endplates. Spine 26:889–896

    Article  PubMed  CAS  Google Scholar 

  51. Hahn M, Vogel M, Amling M et al (1995) Microcallus formations of the cancellous bone: a quantitative analysis of the human spine. J Bone Mine Res 10:1410–1416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ken-ichi Tezuka, Department of Tissue and Organ Development, Gifu University Graduate School of Medicine, for providing micro-CT system used in this study.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Shoumura, S., Emura, S. et al. Regional variations of vertebral trabecular bone microstructure with age and gender. Osteoporos Int 19, 1473–1483 (2008). https://doi.org/10.1007/s00198-008-0593-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-008-0593-3

Keywords

Navigation