Skip to main content

Advertisement

Log in

Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We introduce an algorithm to evaluate hip DXA scans using quantitative image analysis procedures based on the Minkowski functionals (MF) for differentiation between post-menopausal women with and without hip fracture. In a population of 30 post-menopausal women, the new parameter has a highly discriminative potential with a performance superior to standard densitometry providing complementary information compared to BMD.

Introduction

We introduce a novel algorithm to evaluate DXA scans of the hip using quantitative image analysis based on the Minkowski functionals (MF) to identify post-menopausal women with hip-fracture and to compare the results with densitometry.

Methods

BMD of 30 women (73.9 ± 10.3 years), 15 of whom had a recent hip fracture, is obtained by DXA using the “total hip” ROI. The topology of mineral distribution in the scan images is evaluated using the MF-based parameter MF2D. ROC analysis is employed to assess the discriminative potential (fracture/non-fracture).

Results

The area-under-the-curve (AUC) for identification of patients with/without fractures by BMD is .72(p = 0.04), AUC for MF2D is .85(p = 0.001). No statistically significant correlation exists between MF2D and BMD. By discriminant analysis we can show that by combination of MF2D and BMD the outcome increases significantly: using BMD or MF2D alone, 63% and 70% of cases are classified correctly versus 77% of cases in the multivariate model.

Conclusion

The topology-based parameter has a high predictive potential with respect to identification of patients with high risk of hip fracture, performance is superior to densitometry. The new method provides information complementary to BMD. Best classification results are obtained when BMD and MF2D are combined in a multivariate model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fitzpatrick P, Kirke PN, Daly L et al (2001) Predictors of first hip fracture and mortality post fracture in older women. Ir J Med Sci 170:49–53

    Article  PubMed  CAS  Google Scholar 

  2. Hreybe H, Salamoun M, Badra M et al (2004) Hip fractures in Lebanese patients: determinants and prognosis. J Clin Densitom 7:368–375

    Article  PubMed  Google Scholar 

  3. Pande I, Scott DL, O’Neill TW et al (2006) Quality of life, morbidity, and mortality after low trauma hip fracture in men. Ann Rheum Dis 65:87–92

    Article  PubMed  CAS  Google Scholar 

  4. Lang T, Augat P, Majumdar S et al (1998) Noninvasive assessment of bone density and structure using computed tomography and magnetic resonance. Bone 22:149S–153S

    Article  PubMed  CAS  Google Scholar 

  5. Krug R, Banerjee S, Han ET et al (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16:1307–1314

    Article  PubMed  Google Scholar 

  6. Link TM, Majumdar S, Augat P et al (1998) In vivo high resolution MRI of the calcaneus: differences in trabecular structure in osteoporosis patients. J Bone Miner Res 13:1175–1182

    Article  PubMed  CAS  Google Scholar 

  7. El-Kaissi S, Pasco JA, Henry MJ et al (2005) Femoral neck geometry and hip fracture risk: the Geelong osteoporosis study. Osteoporos Int 16:1299–1303

    Article  PubMed  CAS  Google Scholar 

  8. Bergot C, Bousson V, Meunier A et al (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–550

    Article  PubMed  CAS  Google Scholar 

  9. Alonso CG, Curiel MD, Carranza FH et al (2000) Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int 11:714–720

    Article  PubMed  CAS  Google Scholar 

  10. Crabtree NJ, Kroger H, Martin A et al (2002) Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int 13:48–54

    Article  PubMed  CAS  Google Scholar 

  11. Boehm HF, Link TM, Monetti RA et al (2006) Analysis of the topological properties of the proximal femur on a regional scale: evaluation of multi-detector CT-scans for the assessment of biomechanical strength using local Minkowski functionals in 3D. SPIE Medical Imaging, San Diego, pp 6144–6254

    Google Scholar 

  12. Boehm HF, Link TM, Monetti RA et al (2004) Application of the Minkowski functionals in 3D to high resolution MR images of trabecular bone: prediction of the biomechanical strength by non-linear topological measures. SPIE Medical Imaging, San Diego, pp 5323–5370

    Google Scholar 

  13. Majumdar S, Newitt D, Mathur A et al (1996) Magnetic resonance imaging of trabecular bone structure in the distal radius: relationship with X-ray tomographic microscopy and biomechanics. Osteoporos Int 6:376–385

    Article  PubMed  CAS  Google Scholar 

  14. Michielsen K, De Raedt H, Kawakatsu T (2001) Integral-geometry morphological image analysis. Phys Rep 347:461–538

    Article  CAS  Google Scholar 

  15. Berg BA (2004) Markov chain Monte Carlo simulations and their statistical analysis. World Scientific, Singapore

    Google Scholar 

  16. Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer Heidelberg New York

    Google Scholar 

  17. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298

    PubMed  CAS  Google Scholar 

  18. Huberty C (1994) Applied discriminant analysis. Wiley, New York

    Google Scholar 

  19. Eriksson L, Johansson E, Muller M et al (2000) On the selection of the training set in environmental QSAR analysis when compounds are clustered. J Chemometrics 14:599–616

    Article  CAS  Google Scholar 

  20. Stone M (1977) An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. J R Stat Soc 38:44–47

    Google Scholar 

  21. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a parametric approach. Biometrics 44:837–845

    Article  PubMed  CAS  Google Scholar 

  22. White J, Harris SS, Dallal GE et al (2003) Precision of single vs bilateral hip bone mineral density scans. J Clin Densitom 6:159–162

    Article  PubMed  Google Scholar 

  23. Hans D, Duboeuf F, Schott AM et al (1997) Effects of a new positioner on the precision of hip bone mineral density measurements. J Bone Miner Res 12:1289–1294

    Article  PubMed  CAS  Google Scholar 

  24. Faulkner KG, Genant HK, McClung M (1995) Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans. Calcif Tissue Int 56:26–31

    Article  PubMed  CAS  Google Scholar 

  25. Boehm HF, Eckstein F, Wunderer C et al (2005) Improved performance of hip DXA using a novel region of interest in the upper part of the femoral neck: in vitro study using bone strength as a standard of reference. J Clin Densitom 8:488–494

    Article  PubMed  Google Scholar 

  26. Gnudi S, Ripamonti C, Gualtieri G et al (1999) Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Br J Radiol 72:729–733

    PubMed  CAS  Google Scholar 

  27. Gregory JS, Stewart A, Undrill PE et al (2005) Bone shape, structure, and density as determinants of osteoporotic hip fracture: a pilot study investigating the combination of risk factors. Invest Radiol 40:591–597

    Article  PubMed  Google Scholar 

  28. Lochmuller EM, Zeller JB, Kaiser D et al (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598

    Article  PubMed  CAS  Google Scholar 

  29. Gnudi S, Ripamonti C, Lisi L et al (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73

    Article  PubMed  CAS  Google Scholar 

  30. Greenspan SL, Beck TJ, Resnick NM et al (2005) Effect of hormone replacement, alendronate, or combination therapy on hip structural geometry: a 3-year, double-blind, placebo-controlled clinical trial. J Bone Miner Res 20:1525–1532

    Article  PubMed  CAS  Google Scholar 

  31. Berry E, Truscott JG, Stewart SP et al (1996) Spatial distribution of femoral bone mineral in dual energy X-ray absorptiometry images: a possible technique to improve discrimination between normal and osteoporotic patients. Br J Radiol 69:743–750

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. Boehm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehm, H.F., Vogel, T., Panteleon, A. et al. Differentiation between post-menopausal women with and without hip fractures: enhanced evaluation of clinical DXA by topological analysis of the mineral distribution in the scan images. Osteoporos Int 18, 779–787 (2007). https://doi.org/10.1007/s00198-006-0302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0302-z

Keywords

Navigation