Skip to main content

Advertisement

Log in

Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Effect of milk basic protein on bone metabolism in healthy young women.

Introduction

Milk has more beneficial effects on bone health than other food sources. Recent in vitro and in vivo studies have shown that milk whey protein, especially its basic protein fraction (milk basic protein, MBP), contains several components capable of promoting bone formation and inhibiting bone resorption. The object of this study was to examine the effect of MBP on the bone mineral density and bone metabolism of healthy young women.

Methods

Thirty-five healthy young women were randomly assigned to treatment with either placebo or MBP (40 mg per day) for 6 months. The bone mineral density (BMD) of the lumbar vertebrae L2–L4 of each subject was measured by dual-energy X-ray absorptiometry (DXA) at 0 and 6 months of treatment. Serum and urine indexes of bone metabolism were measured at 0, 3 and 6 months. All subjects completed the study in accordance with the protocol.

Results

The mean rate of gain of lumbar BMD in the MBP group (1.57%) was significantly higher than in the placebo group (0.13%, P=0.042). When compared with the placebo group, urinary cross-linked N-telopeptides of type-I collagen (NTx) were significantly decreased, and serum osteocalcin was significantly increased in the MBP group at 6 months.

Conclusion

These results suggested that MBP supplementation was effective in increasing BMD in young women and that this increase in BMD may be primarily mediated through the promotion of bone formation and inhibition of bone resorption by MBP supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kin K, Kushida K, Yamazaki K, Okamoto S, Inoue T (1991) Bone mineral density of the spine in normal Japanese subjects using dual-energy X-ray absorptiometry: Effect of obesity and menopausal status. Calcif Tissue Int 49:101–106

    Article  PubMed  CAS  Google Scholar 

  2. Moreira Kulak CA, Bilezikian JP (1998) Osteoporosis: preventive strategies. Int J Fert Womens Med 43:56–64

    Google Scholar 

  3. Cashman KD (2002) Calcium intake, calcium bioavailability and bone health. Br J Nutr 87:S169–S177

    Article  PubMed  CAS  Google Scholar 

  4. Toba Y, Kajita Y, Masuyama R, Takada Y, Suzuki K, Aoe S (2000) Dietary magnesium supplementation affects bone metabolism and dynamic strength of bone in ovariectomized rats. J Nutr 130:216–220

    PubMed  CAS  Google Scholar 

  5. Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81:1232S–1239S

    PubMed  CAS  Google Scholar 

  6. Bugel S (2003) Vitamin K and bone health. Proc Nutr Soc 62:839–843

    Article  PubMed  CAS  Google Scholar 

  7. Saito Y, Lee YS, Kimura S (1998) Minimum effective dose of casein phosphopeptides (CPP) for enhancement of calcium absorption in growing rats. Int J Vitam Nutr Res 68:335–340

    PubMed  CAS  Google Scholar 

  8. Ishimi Y, Miyaura C, Ohmura M, Onoe Y, Sato T, Uchiyama Y, Ito M, Wang X, Suda T, Ikegami S (1999) Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 140:1893–1900

    Article  PubMed  CAS  Google Scholar 

  9. Takada Y, Aoe S, Kumegawa M (1996) Whey protein stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 223:445–449

    Article  PubMed  CAS  Google Scholar 

  10. Takada Y, Kobayashi N, Matsuyama H, Kato K, Yamamura J, Yahiro M, Kumegawa M, Aoe S (1997) Whey protein suppresses the osteoclast-mediated bone resorption and osteoclast cell formation. Int Dairy J 7:821–825

    Article  CAS  Google Scholar 

  11. Takada Y, Kobayashi N, Kato K, Matsuyama H, Yahiro M, Aoe S (1997) Effect of whey protein on calcium and bone metabolism in ovariectomized rats. J Nutr Sci Vitaminol 43:199–210

    PubMed  CAS  Google Scholar 

  12. Takada Y, Matsuyama H, Kato K, Kobayashi N, Yamamura J, Yahiro M, Aoe S (1997) Milk whey protein enhances the bone breaking force in ovariectomized rats. Nutr Res 17:1709–1720

    Article  CAS  Google Scholar 

  13. Toba Y, Takada Y, Yamamura J, Tanaka M, Matsuoka Y, Kawakami H, Itabashi A, Aoe S, Kumegawa M (2000) Milk basic protein: a novel protective function of milk against osteoporosis. Bone 27:403–408

    Article  PubMed  CAS  Google Scholar 

  14. Aoe S, Toba Y, Yamamura J, Kawakami H, Yahiro M, Kumegawa M, Itabashi A, Takada Y (2001) Controlled trial of the effects of milk basic protein (MBP) supplementation on bone metabolism in healthy adult women. Biosci Biotechnol Biochem 65:913–918

    Article  PubMed  CAS  Google Scholar 

  15. Toba Y, Takada Y, Matsuoka Y, Morita Y, Motouri M, Hirai T, Suguri T, Aoe S, Kawakami H, Kumegawa M, Takeuchi A, Itabashi A (2001) Milk basic protein promotes bone formation and suppresses bone resorption in healthy adult men. Biosci Biotechnol Biochem 65:1353–1357

    Article  PubMed  CAS  Google Scholar 

  16. Yamamura J, Aoe S, Toba Y, Motouri M, Kawakami H, Kumegawa M, Itabashi A, Takada Y (2002) Milk basic protein (MBP) increases radial bone mineral density in healthy adult women. Biosci Biotechnol Biochem 66:702–704

    Article  PubMed  CAS  Google Scholar 

  17. Aoe S, Koyama T, Toba Y, Itabashi A, Takada Y (2005) A controlled trial of the effect of milk basic protein (MBP) supplementation on bone metabolism in healthy menopausal women. Osteoporos Int 16:2123–2128

    Article  PubMed  CAS  Google Scholar 

  18. Resources Council, Science and Technology Agency (2000) Standard tables of food composition in Japan, 5th edn. Printing Bureau, Ministry of Finance, Tokyo

    Google Scholar 

  19. SAS Institute Inc. SAS/STAT User’s Guide, Release 6.03 eds. Cary, NC. SAS Institute

  20. Shiraki M (1989) Clinical practice of DPA. Kidney Metab Bone Dis 2:287–293

    Google Scholar 

  21. Anderson JJ, Rondano PA (1996) Peak bone mass development of females: can young adult women improve their peak bone mass? J Am Coll Nutr 15:570–574

    PubMed  CAS  Google Scholar 

  22. Thomsen K, Eriksen EF, Jorgensen JC, Charles P, Mosekilde L (1989) Seasonal variation of serum bone GLA protein. Scand J Clin Lab Invest 49:605–611

    Article  PubMed  CAS  Google Scholar 

  23. Woitge HW, Scheidt-Nave C, Kissling C, Leidig-Bruckner G, Meyer K, Grauer A, Scharla SH, Ziegler R, Seibel MJ (1998) Seasonal variation of biochemical indexes of bone turnover: results of a population-based study. J Clin Endocrinol Metab 83:68–75

    Article  PubMed  CAS  Google Scholar 

  24. Storm D, Eslin R, Porter ES, Musgrave K, Vereault D, Patton C, Kessenich C, Mohan S, Chen T, Holick MF, Rosen CJ (1998) Calcium supplementation prevents seasonal bone loss and changes in biochemical markers of bone turnover in elderly New England women: a randomized placebo-controlled trial. J Clin Endocrinol Metab 83:3817–3825

    Article  PubMed  CAS  Google Scholar 

  25. Rapuri PB, Kinyamu HK, Gallagher JC, Haynatzka V (2002) Seasonal changes in calciotropic hormones, bone markers, and bone mineral density in elderly women. J Clin Endocrinol Metab 87:2024–2032

    Article  PubMed  CAS  Google Scholar 

  26. Hanson DA, Weis MA, Bollen AM, Maslan SL, Singer FR, Eyre DR (1992) A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res 7:1251–1258

    PubMed  CAS  Google Scholar 

  27. Yamamura J, Takada Y, Goto M, Kumegawa M, Aoe S (1999) High mobility group-like protein in bovine milk stimulates the proliferation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 261:113–117

    Article  PubMed  CAS  Google Scholar 

  28. Yamamura J, Takada Y, Goto M, Kumegawa M, Aoe S (2000) Bovine milk kininogen fragment 1·2 promotes the proliferation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 269:628–632

    Article  PubMed  CAS  Google Scholar 

  29. Matsuoka Y, Serizawa A, Yoshioka T, Yamamura J, Morita Y, Kawakami H, Toba Y, Takada Y, Kumegawa M (2002) Cystatin C in milk basic protein (MBP) and its inhibitory effect on bone resorption in vitro. Biosci Biotechnol Biochem 66:2531–2536

    Article  PubMed  CAS  Google Scholar 

  30. Lerner UH, Grubb A (1992) Human cystatin C, a cysteine proteinase inhibitor, inhibits bone resorption in vitro stimulated by parathyroid hormone and parathyroid hormone-related peptide of malignancy. J Bone Miner Res 7:433–440

    Article  PubMed  CAS  Google Scholar 

  31. Lerner UH, Johansson L, Ransjö M, Rosenquist JB, Reinholt FP, Grubb A (1997) Cystatin C, an inhibitor of bone resorption produced by osteoblasts. Acta Physiol Scand 161:81–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the technical help of Ms. Keiko Ishii (Snow Brand Milk Products Co. Ltd., Tokyo, Japan) in the food analysis records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Toba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uenishi, K., Ishida, H., Toba, Y. et al. Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporos Int 18, 385–390 (2007). https://doi.org/10.1007/s00198-006-0228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0228-5

Keywords

Navigation