Skip to main content

Advertisement

Log in

Quantitative ultrasound variables of the heel in Finnish men aged 18–20 yr: predictors, relationship to bone mineral content, and changes during military service

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Determinants of BUA and SOS and their changes during military service-associated physical training were studied in 196 army recruits and 50 control men, aged 18–20 years.

Methods

Heel ultrasound measurement, DXA, muscle strength test, Cooper’s running test and genetic analyses were performed. Lifestyle factors were recorded. Sex steroids and bone turnover markers were determined. Heel ultrasound was repeated after six months.

Results

Exercise was the most significant determinant of both BUA (p<0.0001) and SOS (p<0.0001). There were 10% and 1.3% differences in BUA (p=0.006) and SOS (p=0.0001), respectively, between men belonging to the lowest and highest quartiles of exercise index. Weight associated with BUA (p=0.005) and height with SOS (p=0.03). BUA and SOS correlated with BMC and BMD (p<0.0001) but explained only up to 21% of their variance. Over six months SOS increased more in recruits than in control men (p=0.0043), the increase being higher, the lower muscle strength at baseline (r =−0.27, p=0.0028).

Conclusion

Exercise is the most important determinant of ultrasonographic variables in men, aged 18–20 years. Physical loading during military training increases SOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonjour J-P, Theintz G, Buchs B, Slosman D, Rizzoli R (2001) Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 73:555–563

    Article  Google Scholar 

  2. Välimäki M, Kärkkäinen M, Lamberg-Allardt C, Laitinen K, Alhava E, Heikkinen J, Impivaara O, Mäkelä P, Palmgren J, Seppänen R, Vuori I, the Cardiovascular Risk in Young Finns Study Group (1994) Exercise, smoking, and calcium intake during adolescence and early adulthood as determinants of peak bone mass. BMJ 309:230–235

    PubMed  Google Scholar 

  3. Riggs BL (1997) Vitamin D-receptor genotypes and bone density. N Engl J Med 337:125–126

    Article  PubMed  CAS  Google Scholar 

  4. Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC Jr (1991) Role of physical activity in the development of skeletal mass in children. J Bone Miner Res 6:1227–1233

    Article  PubMed  CAS  Google Scholar 

  5. Kröger H, Kotaniemi A, Vaino P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    Article  PubMed  Google Scholar 

  6. Johnston CC Jr, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327:82–87

    Article  PubMed  Google Scholar 

  7. Välimäki V-V, Alfthan H, Lehmuskallio E, Löyttyniemi E, Sahi T, Stenman U-H, Suominen H, Välimäki MJ (2004) Vitamin D status as a determinant of peak bone mass in young Finnish men. J Clin Endocrinol Metab 89:76–80

    Article  PubMed  CAS  Google Scholar 

  8. Hans D, Arlot ME, Schott AM, Roux JP, Kotzki PO, Meunier PJ (1995) Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass?: a two-dimensional histomorphometric study. Bone 16:295–300

    Article  PubMed  CAS  Google Scholar 

  9. Hans D, Dargent-Molina P, Schott AM, Sebert JL, Cormier C, Kotzki PO, Delmas PD, Pouilles JM, Breart G, Meunier PJ (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514

    Article  PubMed  CAS  Google Scholar 

  10. Gregg EW, Kriska AM, Salamone LM, Roberts MM, Anderson SJ, Ferrell RE, Kuller LH, Cauley JA (1997) The epidemiology of quantitative ultrasound: a review of the relationships with bone mass, osteoporosis and fracture risk. Osteoporos Int 7:89–99

    Article  PubMed  CAS  Google Scholar 

  11. Njeh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, Tsuda-Futami E, Lu Y, Wu CY, Genant HK (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11:1051–1062

    Article  PubMed  CAS  Google Scholar 

  12. Sawyer A, Moore S, Fielding KT, Nix DA, Kiratli J, Bachrach LK (2001) Calcaneus ultrasound measurements in a convenience sample of healthy youth. J Clin Densitom 4:111–120

    Article  PubMed  CAS  Google Scholar 

  13. Jakes RW, Khaw K, Day NE, Bingham S, Welch A, Oakes S, Luben R, Dalzell N, Reeve J, Wareham NJ (2001) Patterns of physical activity and ultrasound attenuation by heel bone among Norfolk cohort of European Prospective Investigation of Cancer (EPIC Norfolk): population based study. BMJ 322:140–143

    Article  PubMed  CAS  Google Scholar 

  14. Etherington J, Keeling J, Bramley R, Swaminathan R, McCurdie I, Spector TD (1999) The effects of 10 weeks military training on heel ultrasound and bone turnover. Calcif Tissue Int 64:389–393

    Article  PubMed  CAS  Google Scholar 

  15. Viitasalo JT, Era P, Leskinen A-L, Heikkinen E (1985) Muscular strength profiles and anthropometry in random samples of men aged 31–35, 51–55 and 71–75 years. Ergonomics 28:1563–1574

    Google Scholar 

  16. Anderson DC, Thorner MO, Fisher RA, Woodham JP, Goble HL, Besser GM (1975) Effects of hormonal treatment on plasma unbound androgen levels in hirsute women. Acta Endocrinol (Cph) 199(Suppl):224

    Google Scholar 

  17. Södergård R, Bäckström T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17β to human plasma proteins at body temperature. J Steroid Biochem 16:801–810

    Article  PubMed  Google Scholar 

  18. Käkönen SM, Hellman J, Karp M, Laaksonen P, Obrant KJ, Väänänen HK, Lövgren T, Pettersson K (2000) Development and evaluation of three immunofluorometric assays that measure different forms of osteocalcin in serum. Clin Chem 46:332–337

    PubMed  Google Scholar 

  19. Halleen JM, Alatalo SA, Suominen H, Cheng S, Janckila AJ, Väänänen HK (2000)Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 15:1337–1345

    Article  PubMed  CAS  Google Scholar 

  20. Välimäki VV, Piippo K, Välimäki S, Löyttyniemi E, Kontula K, Välimäki MJ (2005) The relation of the Xbal and Pvull polymorphisms of the estrogen receptor gene and the CAG repeat polymorphism of the androgen receptor gene to peak bone mass and bone turnover rate among young healthy men. Osteoporos Int 16:1633–1640

    Article  PubMed  CAS  Google Scholar 

  21. Langton CM, Langton DK (1997) Male and female normative data for ultrasound measurement of the calcaneus within the UK adult population. Br J Radiol 70:580–585

    PubMed  CAS  Google Scholar 

  22. Bouxsein ML, Radloff SE (1997) Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res 12:839–846

    Article  PubMed  CAS  Google Scholar 

  23. Strelitzki R, Evans JA, Clarke AJ (1997) The influence of porosity and pore size on the ultrasonic properties of bone investigated using a phantom material. Osteoporos Int 7:370–375

    Article  PubMed  CAS  Google Scholar 

  24. Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasonic attenuation in cancellous bone. Eng Med 13:89–91

    PubMed  CAS  Google Scholar 

  25. van den Bergh JP, Noordam C, Ozyilmaz A, Hermus AR, Smals AG, Otten BJ (2000) Calcaneal ultrasound imaging in healthy children and adolescents: relation of the ultrasound parameters BUA and SOS to age, body weight, height, foot dimensions and pubertal stage. Osteoporos Int 11:967–976

    Article  PubMed  Google Scholar 

  26. Babaroutsi E, Magkos F, Manios Y, Sidossis LS (2005) Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab 23:157–166

    Article  PubMed  Google Scholar 

  27. Welch A, Camus J, Dalzell N, Oakes S, Reeve J, Khaw KT (2004) Broadband ultrasound attenuation (BUA) of the heel bone and its correlates in men and women in the EPIC-Norfolk cohort: a cross-sectional population-based study. Osteoporos Int 15:217–225

    Article  PubMed  Google Scholar 

  28. Daly RM, Rich PA, Klein R (1997) Influence of high impact loading on ultrasound bone measurements in children: a cross-sectional report. Calcif Tissue Int 60:401–404

    Article  PubMed  CAS  Google Scholar 

  29. Taaffe DR, Duret C, Cooper CS, Marcus R (1999) Comparison of calcaneal ultrasound and DXA in young women. Med Sci Sports Exerc 31:1484–1489

    Article  PubMed  CAS  Google Scholar 

  30. Landin-Wilhelmsen K, Johansson S, Rosengren A, Dotevall A, Lappas G, Bengtsson BA, Wilhelmsen L (2000) Calcaneal ultrasound measurements are determined by age and physical activity. Studies in two Swedish random population samples. J Intern Med 247:269–278

    Article  PubMed  CAS  Google Scholar 

  31. Lehtonen-Veromaa M, Möttönen T, Nuotio I, Heinonen OJ, Viikari J (2000) Influence of physical activity on ultrasound and dual-energy X-ray absorptiometry bone measurements in peripubertal girls: a cross-sectional study. Calcif Tissue Int 66:248–254

    Article  PubMed  CAS  Google Scholar 

  32. Wetter AC, Economos CD (2004) Relationship between quantitative ultrasound, anthropometry and sports participation in college aged adults. Osteoporos Int 15:799–806

    Article  PubMed  Google Scholar 

  33. Jawed S, Horton B, Masud T (2001) Quantitative heel ultrasound variables in powerlifters and controls. Br J Sports Med 35:274–275

    Article  PubMed  CAS  Google Scholar 

  34. Mayoux-Benhamou MA, Roux C, Rabourdin JP, Revel M (1998) Plantar flexion force is related to calcaneus bone ultrasonic parameters in postmenopausal women. Calcif Tissue Int 62:462–464

    Article  PubMed  CAS  Google Scholar 

  35. Micklesfield LK, Zielonka EA, Charlton KE, Katzenellenbogen L, Harkins J, Lambert EV (2004) Ultrasound bone measurements in pre-adolescent girls: interaction between ethnicity and lifestyle factors. Acta Paediatr 93:752–758

    Article  PubMed  CAS  Google Scholar 

  36. Cvijetic S, Baric IC, Bolanca S, Juresa V, Ozegovic DD (2003) Ultrasound bone measurement in children and adolescents. Correlation with nutrition, puberty, anthropometry, and physical activity. J Clin Epidemiol 56:591–597

    Article  PubMed  Google Scholar 

  37. Adami S, Giannini S, Giorgino R, Isaia GC, Maggi S, Sinigaglia L, Filipponi P, Crepaldi G (2004). Effect of age, weight and lifestyle factors on calcaneal quantitative ultrasound in premenopausal women: the ESOPO study. Calcif Tissue Int 74:317–321

    Article  PubMed  CAS  Google Scholar 

  38. Bernaards CM, Twisk JW, Snel J, van Mechelen W, Lips P, Kemper HC (2004) Smoking and quantitative ultrasound parameters in the calcaneus in 36-year-old men and women. Osteoporos Int 15:735–741

    Article  PubMed  Google Scholar 

  39. Adami S, Giannini S, Giorgino R, Isaia G, Maggi S, Sinigaglia L, Filipponi P, Crepaldi G, Di Munno O (2003) The effect of age, weight, and lifestyle factors on calcaneal quantitative ultrasound: the ESOPO study. Osteoporos Int 14:198–207

    PubMed  Google Scholar 

  40. Välimäki VV, Alfthan H, Ivaska KK, Löyttyniemi E, Pettersson K, Stenman UH, Välimäki MJ (2004) Serum estradiol, testosterone, and sex hormone-binding globulin as regulators of peak bone mass and bone turnover rate in young Finnish men. J Clin Endocrinol Metab 89:3785–3789

    Article  PubMed  CAS  Google Scholar 

  41. Albagha OM, Pettersson U, Stewart A, McGuigan FE, MacDonald HM, Reid DM, Ralston SH (2005) Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J Med Genet 42:240–246

    Article  PubMed  CAS  Google Scholar 

  42. Patel MS, Cole DE, Smith JD, Hawker GA, Wong B, Trang H, Vieth R, Meltzer P, Rubin LA (2000) Alleles of the estrogen receptor alpha-gene and an estrogen receptor cotranscriptional activator gene, amplified in breast cancer-1 (AIB1), are associated with quantitative calcaneal ultrasound. J Bone Miner Res 5:2231–2239

    Article  Google Scholar 

  43. Koh JM, Nam-Goong IS, Hong JS, Kim HK, Kim JS, Kim SY, Kim GS (2004) Oestrogen receptor alpha genotype, and interactions between vitamin D receptor and transforming growth factor-beta1 genotypes are associated with quantitative calcaneal ultrasound in postmenopausal women. Clin Endocrinol (Oxf) 60:232–240

    Article  CAS  Google Scholar 

  44. Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, Langdahl B, van Meurs JB, Mosekilde L, Scollen S, Albagha OM, Bustamante M, Carey AH, Dunning AM, Enjuanes A, van Leeuwen JP, Mavilia C, Masi L, McGuigan FE, Nogues X, Pols HA, Reid DM, Schuit SC, Sherlock RE, Uitterlinden AG (2004) Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 292:2105–2114

    Article  PubMed  CAS  Google Scholar 

  45. Sundberg M, Gardsell P, Johnell O, Ornstein E, Sernbo I (1998) Comparison of quantitative ultrasound measurements in calcaneus with DXA and SXA at other skeletal sites: a population-based study on 280 children aged 11–16 years. Osteoporos Int 8:410–417

    Article  PubMed  CAS  Google Scholar 

  46. Lum CK, Wang MC, Moore E, Wilson DM, Marcus R, Bachrach LK (1999) A comparison of calcaneus ultrasound and dual X-ray absorptiometry in healthy North American youths and young adults. J Clin Densitom 2:403–411

    Article  PubMed  CAS  Google Scholar 

  47. Fielding KT, Nix DA, Bachrach LK (2003) Comparison of calcaneus ultrasound and dual X-ray absorptiometry in children at risk of osteopenia. J Clin Densitom 6:7–15

    Article  PubMed  Google Scholar 

  48. Ayers M, Prince M, Ahmadi S, Baran DT (2000) Reconciling quantitative ultrasound of the calcaneus with X-ray-based measurements of the central skeleton. J Bone Miner Res 15:1850–1855

    Article  PubMed  CAS  Google Scholar 

  49. Adler RA, Funkhouser HL, Holt CM (2001) Utility of heel ultrasound bone density in men. J Clin Densitom 4:225–230

    Article  PubMed  CAS  Google Scholar 

  50. Khaw KT, Reeve J, Luben R, Bingham S, Welch A, Wareham N, Oakes S, Day N (2004) Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 363:197–202

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by a grant from Ministry of Education, Helsinki, Finland, Research Funding from Helsinki University Central Hospital (Erityisvaltionosuus), Emil Aaltonen Foundation, Tampere, Finland and Finnish Medical Society, Duodecim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Välimäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Välimäki, VV., Löyttyniemi, E. & Välimäki, M.J. Quantitative ultrasound variables of the heel in Finnish men aged 18–20 yr: predictors, relationship to bone mineral content, and changes during military service. Osteoporos Int 17, 1763–1771 (2006). https://doi.org/10.1007/s00198-006-0186-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0186-y

Keywords

Navigation