Skip to main content
Log in

Empfehlungen für die Probenentnahme in der forensischen Anthropologie

Untersuchung von DNA und Stabilisotopen

Recommendations for sampling in forensic anthropology

Ancient DNA and stable isotope analyses

  • Leitthema
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

In den vergangenen Jahrzehnten wurden zunehmend genetische und biogeochemische Analyseverfahren in der biologischen Anthropologie (Synonym Bioarchäologie) etabliert. Viele dieser Anwendungen beruhen auf Methoden, die auch in der forensischen Anthropologie Anwendung finden. In der Bioarchäologie hängt der Erfolg der zeit- und kostenintensiven Analysen entscheidend von der optimalen Entnahme und Auswahl der Proben ab; deshalb sollte die Beprobung für genetische und biogeochemische Analysen bereits im Feld erfolgen. Diese Erfahrungen legen Beprobungsstrategien nahe, die im vorliegenden Beitrag erläutert werden und für die Rechtsmedizin ebenfalls von Relevanz sind.

Abstract

Genetic and biogeochemical analyses have become increasingly established in biological anthropology (synonym bioarchaeology) over the last decades. Many of these applications are based on methods also used in forensic anthropology. The success of time and cost-intensive analyses often depends on the optimal selection and taking of samples. Therefore, sampling for genetic and biogeochemical analyses should be carried out in the field. This article explains recommended sampling strategies acquired by experience which are also relevant in forensic medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. AlQahtani SJ, Hector MP, Liversidge HM (2010) Brief communication: the London atlas of human tooth development and eruption. Am J Phys Anthropol 142:481–490

    Article  CAS  PubMed  Google Scholar 

  2. Anslinger K, Weichhold G, Keil W et al (2001) Identification of the skeletal remains of Martin Bormann by mtDNA analysis. Int J Legal Med 114:194–196

    Article  CAS  PubMed  Google Scholar 

  3. Bell LS (1990) Palaeopathology and diagenesis: an SEM evaluation of structural changes using backscattered electron imaging. J Archaeol Sci 17:85–102

    Article  Google Scholar 

  4. Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13:135–187

    Article  Google Scholar 

  5. Beyser J, Pitz K, Horn P et al (2003) Isotopenanalytik. Hilfsmittel zur Herkunftsbestimmung unbekannter Toter. Kriminalistik 57:443–452

    Google Scholar 

  6. Bollongino R, Vigne JD (2008) Temperature monitoring in archaeological animal bone samples in the Near East arid area, before, during and after excavation. J Archaeol Sci 35:873–881

    Article  Google Scholar 

  7. Bramanti B, Thomas MG, Haak W et al (2009) Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 326:137–140

    Article  CAS  PubMed  Google Scholar 

  8. Brandt G, Knipper C, Roth C et al (2010) Beprobungsstrategien für aDNA und Isotopenanalysen an historischem und prähistorischem Skelettmaterial. In: Meller H, Alt KW (Hrsg) Anthropologie, Isotopie und DNA – biographische Annäherung an namenlose vorgeschichtliche Skelette. Landesamt für Denkmalpflege und Achäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte, Halle (Saale), S 17–32

  9. Burger J, Kirchner M, Bramanti B et al (2007) Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc Natl Acad Sci U S A 104:3736–3741

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82:197–225

    Article  CAS  Google Scholar 

  11. Chenery C, Müldner G, Evans J et al (2010) Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK. J Archaeol Sci 37:150–163

    Article  Google Scholar 

  12. Coble MD, Loreille OM, Wadhams MJ et al (2009) Mystery solved: the identification of the two missing Romanov children using DNA analysis. PLoS One 4:e4838. DOI 10.1371/journal.pone.0004838

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dahlenburg R, Rossmann A, Schmidt H-L (2006) Stabilisotopenuntersuchungen an Grundstoffen zur illegalen Herstellung von synthetischen Drogen (ATS). In: Pragst F, Aderjan R (Hrsg) Praxis der Forensischen Toxikologie. Beiträge zum XIV. Symposium der Gesellschaft für Toxikologische und Forensische Chemie. Helm, Heppenheim, S 208–219

  14. Daux V, Lécuyer C, Héran M-A et al (2008) Oxygen isotope fractionation between human phosphate and water revisited. J Hum Evol 55:1138–1147

    Article  PubMed  Google Scholar 

  15. Ehleringer JR, Bowen GJ, Chesson LA et al (2008) Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci U S A 105:2788–2793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Jong HN de, Foster GL, Heyd V, Pike AW (2010) Further Sr isotopic studies on the Eulau multiple graves using laser ablation ICP-MS. In: Meller H, Alt KW (Hrsg) Anthropologie, Isotopie und DNA – biographische Annäherung an namenlose vorgeschichtliche Skelette. Landesamt für Denkmalpflege und Achäologie Sachsen-Anhalt, Landesmuseum für Vorgeschichte, Halle (Saale), S 63–69

  17. Fraser I, Meier-Augenstein W (2007) Stable 2H isotope analysis of modern-day human hair and nails can aid forensic human identification. Rapid Commun Mass Spectrom 21:3279–3285

    Article  CAS  PubMed  Google Scholar 

  18. Gerstenberger J, Hummel S, Herrmann B (2002) Reconstruction of residence patterns through genetic typing of skeletal remains of an early medieval population. Anc Biomol 4:25–31

    Article  CAS  Google Scholar 

  19. Gilbert MT, Binladen J, Miller W et al (2007) Recharacterization of ancient DNA miscoding lesions: insights in the era of sequencing-by-synthesis. Nucleic Acids Res 35:1–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722

    Article  CAS  PubMed  Google Scholar 

  21. Gulson BL, Jameson CW, Gillings BR (1997) Stable lead isotopes in teeth as indicators of past domicile – a potential new tool in forensic science? J Forensic Sci 42:787–791

    CAS  PubMed  Google Scholar 

  22. Haak W, Brandt G, Jong HN de et al (2008) Ancient DNA, strontium isotopes, and osteological analyses shed light on social and kinship organization of the later Stone Age. Proc Natl Acad Sci U S A 105:18226–18231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Haak W, Balanovsky O, Sanchez JJ et al (2010) Ancient DNA from European early Neolithic farmers reveals their near eastern affinities. PLoS Biol 8:e1000536

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hansen A, Willerslev E, Wiuf C et al (2001) Statistical evidence for miscoding lesions in ancient DNA templates. Mol Biol Evol 18:262–265

    Article  CAS  PubMed  Google Scholar 

  25. Hedges RE, Millard AR (1995) Bones and groundwater: towards the modelling of diagenetic processes. J Archaeol Sci 22:155–164

    Article  Google Scholar 

  26. Hofreiter M, Serre D, Poinar HN et al (2001) Ancient DNA. Nat Rev Genet 2:353–359

    Article  CAS  PubMed  Google Scholar 

  27. Keyser C, Bouakaze C, Crubézy E et al (2009) Ancient DNA provides new insights into the history of south Siberian Kurgan people. Hum Genet 126:395–410

    Article  CAS  PubMed  Google Scholar 

  28. Keyser-Tracqui C, Crubézy E, Ludes B (2003) Nuclear and mitochondrial DNA analysis of a 2,000-year-old necropolis in the Egyin Gol Valley of Mongolia. Am J Hum Genet 73:247–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Knipper C (2004) Die Strontiumisotopenanalyse: eine naturwissenschaftliche Methode zur Erfassung von Mobilität in der Ur- und Frühgeschichte. Jahrb Roem Germ Zentralmuseum Mainz 51:589–685

    Google Scholar 

  30. Knipper C (2011) Die räumliche Organisation der linearbandkeramischen Rinderhaltung: naturwissenschaftliche und archäologische Untersuchungen. British Archaeological Reports. International Series 2305. Archaeopress, Oxford

  31. Knipper C, Maurer A-F, Peters D et al (2012) Mobility in Thuringia or mobile Thuringians: a strontium isotope study from early medieval central Germany. In: Kaiser E, Burger J, Schier W (Hrsg) Migrations in prehistory and early history stable isotopes and population genetics. De Gruyter, Berlin, S 293–317

  32. Krause J, Fu Q, Good JM et al (2010) The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464:894–897

    Article  CAS  PubMed  Google Scholar 

  33. Krings M, Stone A, Schmitz RW et al (1997) Neandertal DNA sequences and the origin of modern humans. Cell 90:19–30

    Article  CAS  PubMed  Google Scholar 

  34. Lacan M, Keyser C, Ricaut FX et al (2011) Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc Natl Acad Sci U S A 108:9788–9791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Lee-Thorp JA (2008) On isotopes and old bones. Archaeometry 50:925–950

    Article  CAS  Google Scholar 

  36. Lehn C, Graw M (2012) Wie viel Regionalität steckt in Körpergewebe? Isotopenmethoden zur geografischen Herkunftsbestimmung von unbekannten Toten. Rechtsmedizin 22:99–105

    Article  Google Scholar 

  37. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  PubMed  Google Scholar 

  38. Meier-Augenstein W, Fraser I (2008) Forensic isotope analysis leads to identification of a mutilated murder victim. Sci Justice 48:153–159

    Article  CAS  PubMed  Google Scholar 

  39. Mützel E, Lehn C, Peschel O et al (2009) Assignment of unknown persons to their geographical origin by determination of stable isotopes in hair samples. Int J Legal Med 123:35–40

    Article  Google Scholar 

  40. Nehlich O, Borić D, Stefanović S, Richards MP (2010) Sulphur isotope evidence for freshwater fish consumption: a case study from the Danube Gorges, SE Europe. J Archaeol Sci 37:1131–1139

    Article  Google Scholar 

  41. Nielsen-Marsh CM, Hedges RE (2000) Patterns of diagenesis in bone II: effects of acetic acid treatment and the removal of diagenetic CO3 2−. J Archaeol Sci 27:1151–1159

    Article  Google Scholar 

  42. Oelze VM, Siebert A, Nicklisch N et al (2011) Early Neolithic diet and animal husbandry: stable isotope evidence from three Linearbandkeramik (LBK) sites in Central Germany. J Archaeol Sci 38:270–279

    Article  Google Scholar 

  43. Olze A, Schmeling A, Rieger K et al (2003) Untersuchungen zum zeitlichen Verlauf der Weisheitszahnmineralisation bei einer deutschen Population. Rechtsmedizin 13:5–10

    Google Scholar 

  44. Pääbo S (1989) Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A 86:1939–1943

    Article  PubMed Central  PubMed  Google Scholar 

  45. Pilli E, Modi A, Serpico C et al (2013) Monitoring DNA contamination in handled vs. directly excavated ancient human skeletal remains. PLoS One 8:e52524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Pruvost M, Schwarz R, Correia VB et al (2007) Freshly excavated fossil bones are best for amplification of ancient DNA. Proc Natl Acad Sci U S A 104:739–744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Richards MP, Harvarti K, Grimes V et al (2008) Strontium isotope evidence of Neanderthal mobility at the site of Lakonis, Greece using laser-ablation PIMMS. J Archaeol Sci 35:1251–1256

    Article  Google Scholar 

  48. Rummel S, Hölzl S, Horn P (2007) Isotopensignaturen von Bio- und Geoelementen in der Forensik. In: Herrmann B, Saternus KS (Hrsg) Kriminalbiologie. Biologische Spurenkunde, Bd 1. Springer, Berlin Heidelberg New York Tokio, S 381–407

  49. Schroeder HE (1992) Orale Strukturbiologie: Entwicklungsgeschichte, Struktur und Funktion normaler Hart- und Weichgewebe der Mundhöhle und des Kiefergelenks, 4. Aufl. Thieme, Stuttgart

  50. Schweissing MM, Grupe G (2003) Stable strontium isotopes in human teeth and bone: a key to migration events of the late Roman period in Bavaria. J Archaeol Sci 30:1373–1383

    Article  Google Scholar 

  51. Sieper HP, Kupka HJ, Williams T et al (2006) A measuring system for the fast simultaneous isotope ratio and elemental analysis of carbon, hydrogen, nitrogen and sulfur in food commodities and other biological material. Rapid Commun Mass Spectrom 20:2521–2527

    Article  CAS  PubMed  Google Scholar 

  52. Simandan T, Sun J, Dix TA (1998) Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals. Biochem J 335:233–240

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Simón M, Jordana X, Armentano N et al (2011) The presence of nuclear families in prehistoric collective burials revisited: the bronze age burial of Montanissell cave (Spain) in the light of aDNA. Am J Phys Anthropol 146:406–413

    Article  PubMed  Google Scholar 

  54. Simonetti A, Buzon MR, Creaser RA (2008) In-situ elemental and Sr isotope investigation of human tooth enamel by laser ablation-(MC)-ICP-MS: successes and pitfalls. Archaeometry 50:371–385

    Article  CAS  Google Scholar 

  55. Skoglund P, Malmström H, Raghavan M et al (2012) Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336:466–469

    Article  CAS  PubMed  Google Scholar 

  56. Smith CI, Chamberlain AT, Riley MS et al (2003) The thermal history of human fossils and the likelihood of successful DNA amplification. J Hum Evol 45:203–217

    Article  PubMed  Google Scholar 

  57. Stephan E (2008) Stabile Isotope in fossilen Faunenfunden: Erforschung von Klima, Umwelt und Ernährung prähistorischer Tiere. In: Hauptmann A, Pingel V (Hrsg) Archäometrie. Methoden und Anwendungsbeispiele naturwissenschaftlicher Verfahren in der Archäologie. Schweizerbart, Stuttgart, S 46–66

  58. Willerslev E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272:3–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Wright LE, Schwarcz HP (1998) Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. Am J Phys Anthropol 106:1–18

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. K.W. Alt, G. Brandt, C. Knipper, C. Lehn geben an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.W. Alt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alt, K., Brandt, G., Knipper, C. et al. Empfehlungen für die Probenentnahme in der forensischen Anthropologie. Rechtsmedizin 24, 179–185 (2014). https://doi.org/10.1007/s00194-014-0950-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-014-0950-9

Schlüsselwörter

Keywords

Navigation