Abstract
This work presents the procedure for constructing a machine-learned surrogate model for hot-spot ignition and growth rates in pressed HMX materials. A Bayesian kriging algorithm is used to assimilate input data obtained from high-resolution mesoscale simulations. The surrogates are built by generating a sparse set of training data using reactive mesoscale simulations of void collapse by varying loading conditions and void sizes. Insights into the physics of void collapse and ignition and growth of hot spots are obtained. The criticality envelope for hot spots is obtained as the function \( \varSigma_{\text{cr}} = f\left( {P_{\text{s}} ,D_{\text{void}} } \right) \) where \( P_{\text{s}} \) is the imposed shock pressure and \( D_{\text{void}} \) is the void size. Criticality of hot spots is classified into the plastic collapse and hydrodynamic jetting regimes. The information obtained from the surrogate models for hot-spot ignition and growth rates and the criticality envelope can be utilized in meso-informed ignition and growth models to perform multi-scale simulations of pressed HMX materials.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Molek, C., Welle, E.: Private Communication, Image obtained by Ryan Wixom (LANL)
Mader, C.L.: Numerical Modeling of Explosives and Propellants. CRC Press, Boca Raton (2007)
Field, J.E.: Hot spot ignition mechanisms for explosives. Acc. Chem. Res. 25(11), 489–496 (1992). https://doi.org/10.1021/ar00023a002
Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: Collapse of elongated voids in porous energetic materials: effects of void orientation and aspect ratio on initiation. Phys. Rev. Fluids 2(4), 043201 (2017). https://doi.org/10.1103/PhysRevFluids.2.043201
Levesque, G.A., Vitello, P.: The effect of pore morphology on hot spot temperature. Propellants Explos. Pyrotech. 40(2), 303–308 (2015). https://doi.org/10.1002/prep.201400184
Kapila, A.K., Schwendeman, D.W., Gambino, J.R., Henshaw, W.D.: A numerical study of the dynamics of detonation initiated by cavity collapse. Shock Waves 25, 545–572 (2015). https://doi.org/10.1007/s00193-015-0597-9
Sen, O., Rai, N.K., Diggs, A.S., Hardin, D.B., Udaykumar, H.S.: Multi-scale shock-to-detonation simulation of pressed HMX: A meso-informed ignition and growth model. J. Appl. Phys. 124(8), 085110 (2018). https://doi.org/10.1063/1.5046185
Lee, E.L., Tarver, C.M.: Phenomenological model of shock initiation in heterogeneous explosives. Phys. Fluids 23(12), 2362–2372 (1980). https://doi.org/10.1063/1.862940
Gaul, N.J., Cowles, M.K., Cho, H., Choi, K.K., Lamb, D.: Modified Bayesian Kriging for noisy response problems for reliability analysis. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2015). https://doi.org/10.1115/detc2015-47370
Sen, O., Gaul, N.J., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Evaluation of kriging based surrogate models constructed from mesoscale computations of shock interaction with particles. J. Comput. Phys. 336, 235–260 (2017). https://doi.org/10.1016/j.jcp.2017.01.046
Sen, O., Davis, S., Jacobs, G., Udaykumar, H.S.: Evaluation of convergence behavior of metamodeling techniques for bridging scales in multi-scale multimaterial simulation. J. Comput. Phys. 294, 585–604 (2015). https://doi.org/10.1016/j.jcp.2015.03.043
Sen, O., Gaul, N.J., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Evaluation of multifidelity surrogate modeling techniques to construct closure laws for drag in shock-particle interactions. J. Comput. Phys. 371, 434–451 (2018). https://doi.org/10.1016/j.jcp.2018.05.039
Sen, O., Gaul, N.J., Davis, S., Choi, K.K., Jacobs, G., Udaykumar, H.S.: Role of pseudo-turbulent stresses in shocked particle clouds and construction of surrogate models for closure. Shock Waves 28, 579–597 (2018). https://doi.org/10.1007/s00193-017-0801-1
Price, D.: Effect of Particle Size on the Shock Sensitivity of Pure Porous HE (High Explosive). Naval Surface Weapons Center, Silver Spring (1986)
Campbell, A.W., Davis, W.C., Ramsay, J.B., Travis, J.R.: Shock initiation of solid explosives. Phys. Fluids 4(4), 511–521 (1961). https://doi.org/10.1063/1.1706354
Dinegar, R., Rochester, R., Millican, M.: The Effect of Specific Surface on the Explosion Times of Shock Initiated PETN. Los Alamos National Laboratory, Los Alamos (1963)
Scott, C.L.: Effect of particle size on shock initiation of PETN, RDX, and Tetryl. 5th International Symposium on Detonation, pp. 259–266. Office of Naval Research (1972)
Howe, P., Frey, R., Taylor, B., Boyle, V.: Shock initiation and the critical energy concept. 6th International Symposium on Detonation, pp. 11–19. Office of Naval Research (1976)
Schwarz, A.C.: Shock initiation sensitivity of hexanitrostilbene (HNS). 7th International Symposium on Detonation, pp. 1024–1028. Office of Naval Research (1981)
Welle, E.J., Molek, C.D., Wixom, R.R., Samuels, P.: Microstructural effects on the ignition behavior of HMX. J. Phys. Conf. Ser. 500, 052049 (2014). https://doi.org/10.1088/1742-6596/500/5/052049
Honodel, C.A., Humphrey, J.R., Weingart, R.C., Lee, R.S., Kramer, P.: Shock initiation of TATB formulations. 7th Symposium (International) on Detonation, pp. 425–434 (1981)
Carroll, M., Holt, A.: Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 43(4), 1626–1636 (1972). https://doi.org/10.1063/1.1661372
Frey, R.B.: Cavity Collapse in Energetic Materials. Army Ballistic Research Lab, Aberdeen Proving Ground (1986)
Holt, A., Carroll, M., Butcher, B.: Application of a new theory for the pressure-induced collapse of pores in ductile materials (UCRL-75060). Lawrence Livermore Lab, California University, Livermore (1973)
Moulard, H.: Critical conditions for shock initiation of detonation by small projectile impact. 7th International Symposium on Detonation, pp. 316–324. Office of Naval Research (1981)
Khasainov, B.A., Borisov, A.A., Ermolaev, B.S., Korotkov, A.I.: Two-phase visco-plastic model of shock initiation of detonation in high-density pressed explosives. 7th International Symposium on Detonation, pp. 435–447. Office of Naval Research (1981)
Perry, W.L., Clements, B., Ma, X., Mang, J.T.: Relating microstructure, temperature, and chemistry to explosive ignition and shock sensitivity. Combust. Flame 190, 171–176 (2018). https://doi.org/10.1016/j.combustflame.2017.11.017
Tarver, C.M., Chidester, S.K., Nichols, A.L.: Critical conditions for impact- and shock-induced hot spots in solid explosives. J. Phys. Chem. 100(14), 5794–5799 (1996). https://doi.org/10.1021/jp953123s
Rai, N.K., Schmidt, M.J., Udaykumar, H.S.: High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds. Phys. Rev. Fluids 2(4), 043202 (2017). https://doi.org/10.1103/PhysRevFluids.2.043202
Rai, N.K., Udaykumar, H.: Three-dimensional simulations of void collapse in energetic materials. Phys. Rev. Fluids 3(3), 033201 (2018). https://doi.org/10.1103/PhysRevFluids.3.033201
Ponthot, J.-P.: Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. Int. J. Plast. 18(1), 91–126 (2002). https://doi.org/10.1016/S0749-6419(00)00097-8
Menikoff, R., Sewell, T.D.: Constituent properties of HMX needed for mesoscale simulations. Combust. Theor. Model. 6(1), 103–125 (2002). https://doi.org/10.1088/1364-7830/6/1/306
Sambasivan, S., Kapahi, A., Udaykumar, H.S.: Simulation of high speed impact, penetration and fragmentation problems on locally refined Cartesian grids. J. Comput. Phys. 235, 334–370 (2012). https://doi.org/10.1016/j.jcp.2012.10.031
Kapahi, A., Sambasivan, S., Udaykumar, H.: A three-dimensional sharp interface Cartesian grid method for solving high speed multi-material impact, penetration and fragmentation problems. J. Comput. Phys. 241, 308–332 (2013). https://doi.org/10.1016/j.jcp.2013.01.007
Sewell, T.D., Menikoff, R.: Complete equation of state for β-HMX and implications for initiation. AIP Conference Proceedings, vol. 706, p. 157 (2004). https://doi.org/10.1063/1.1780207
Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152(2), 457–492 (1999). https://doi.org/10.1006/jcph.1999.6236
Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)
Rai, N.K., Kapahi, A., Udaykumar, H.S.: Treatment of contact separation in Eulerian high-speed multimaterial dynamic simulations. Int. J. Numer. Meth. Eng. 100(11), 793–813 (2014). https://doi.org/10.1002/nme.4760
Rai, N.K., Udaykumar, H.S.: Mesoscale simulation of reactive pressed energetic materials under shock loading. J. Appl. Phys. 118(24), 245905 (2015). https://doi.org/10.1063/1.4938581
Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968). https://doi.org/10.1137/0705041
Fehlberg, E.: Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge–Kutta Formulas with Stepsize Control. NASA TR R-287, National Aeronautics and Space Administration (1968)
Taverniers, S., Haut, T.S., Barros, K., Alexander, F.J., Lookman, T.: Physics-based statistical learning approach to mesoscopic model selection. Phys. Rev. E 92(5), 053301 (2015). https://doi.org/10.1103/PhysRevE.92.053301
Haykin, S.: Neural Networks: A Comprehensive Foundation. MacMillon College Division Publishers, New York (2004)
Springer, H.K., Tarver, C.M., Bastea, S.: Effects of high shock pressures and pore morphology. AIP Conference Proceedings, vol. 1793, p. 080002 (2017). https://doi.org/10.1063/1.4971608
Massoni, J., Saurel, R., Baudin, G., Demol, G.: A mechanistic model for shock initiation of solid explosives. Phys. Fluids 11(3), 710–736 (1999). https://doi.org/10.1063/1.869941
Rai, N.K., Udaykumar, H.S.: Void collapse generated meso-scale energy localization in shocked energetic materials: non-dimensional parameters, regimes and criticality of hotspot. Phys. Fluids (under review)
Bourne, N., Milne, A.: The temperature of a shock-collapsed cavity. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459(2036), 1851–1861 (2003). https://doi.org/10.1098/rspa.2002.1101
James, H.R.: An extension to the critical energy criterion used to predict shock initiation thresholds. Propellants Explos. Pyrotech. 21(1), 8–13 (1996). https://doi.org/10.1002/prep.19960210103
Bowden, F., Yoffe, A.: Explosion in liquids and solids. Endeavour 21(83–8), 125 (1962)
Acknowledgements
The authors gratefully acknowledge the financial support from the Air Force Office of Scientific Research (Dynamic Materials Program, program manager: Martin Schmidt) under Grant Number FA9550-15-1-0332 and Eglin AFB, AFRL-RWPC (program manager: Angela Diggs) under the Contract Number FA8651-16-1-0005. The authors are also thankful to K.K. Choi at the University of Iowa and Nicholas J. Gaul at RAMDO LLC, Iowa City, for providing the computational code for the modified Bayesian kriging method.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Higgins.
Rights and permissions
About this article
Cite this article
Nassar, A., Rai, N.K., Sen, O. et al. Modeling mesoscale energy localization in shocked HMX, part I: machine-learned surrogate models for the effects of loading and void sizes. Shock Waves 29, 537–558 (2019). https://doi.org/10.1007/s00193-018-0874-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00193-018-0874-5